@inproceedings{ge-etal-2019-automatic,
title = "Automatic Grammatical Error Correction for Sequence-to-sequence Text Generation: An Empirical Study",
author = "Ge, Tao and
Zhang, Xingxing and
Wei, Furu and
Zhou, Ming",
editor = "Korhonen, Anna and
Traum, David and
M{\`a}rquez, Llu{\'i}s",
booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P19-1609/",
doi = "10.18653/v1/P19-1609",
pages = "6059--6064",
abstract = "Sequence-to-sequence (seq2seq) models have achieved tremendous success in text generation tasks. However, there is no guarantee that they can always generate sentences without grammatical errors. In this paper, we present a preliminary empirical study on whether and how much automatic grammatical error correction can help improve seq2seq text generation. We conduct experiments across various seq2seq text generation tasks including machine translation, formality style transfer, sentence compression and simplification. Experiments show the state-of-the-art grammatical error correction system can improve the grammaticality of generated text and can bring task-oriented improvements in the tasks where target sentences are in a formal style."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ge-etal-2019-automatic">
<titleInfo>
<title>Automatic Grammatical Error Correction for Sequence-to-sequence Text Generation: An Empirical Study</title>
</titleInfo>
<name type="personal">
<namePart type="given">Tao</namePart>
<namePart type="family">Ge</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xingxing</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Furu</namePart>
<namePart type="family">Wei</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ming</namePart>
<namePart type="family">Zhou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Korhonen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Traum</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lluís</namePart>
<namePart type="family">Màrquez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Florence, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Sequence-to-sequence (seq2seq) models have achieved tremendous success in text generation tasks. However, there is no guarantee that they can always generate sentences without grammatical errors. In this paper, we present a preliminary empirical study on whether and how much automatic grammatical error correction can help improve seq2seq text generation. We conduct experiments across various seq2seq text generation tasks including machine translation, formality style transfer, sentence compression and simplification. Experiments show the state-of-the-art grammatical error correction system can improve the grammaticality of generated text and can bring task-oriented improvements in the tasks where target sentences are in a formal style.</abstract>
<identifier type="citekey">ge-etal-2019-automatic</identifier>
<identifier type="doi">10.18653/v1/P19-1609</identifier>
<location>
<url>https://aclanthology.org/P19-1609/</url>
</location>
<part>
<date>2019-07</date>
<extent unit="page">
<start>6059</start>
<end>6064</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Automatic Grammatical Error Correction for Sequence-to-sequence Text Generation: An Empirical Study
%A Ge, Tao
%A Zhang, Xingxing
%A Wei, Furu
%A Zhou, Ming
%Y Korhonen, Anna
%Y Traum, David
%Y Màrquez, Lluís
%S Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics
%D 2019
%8 July
%I Association for Computational Linguistics
%C Florence, Italy
%F ge-etal-2019-automatic
%X Sequence-to-sequence (seq2seq) models have achieved tremendous success in text generation tasks. However, there is no guarantee that they can always generate sentences without grammatical errors. In this paper, we present a preliminary empirical study on whether and how much automatic grammatical error correction can help improve seq2seq text generation. We conduct experiments across various seq2seq text generation tasks including machine translation, formality style transfer, sentence compression and simplification. Experiments show the state-of-the-art grammatical error correction system can improve the grammaticality of generated text and can bring task-oriented improvements in the tasks where target sentences are in a formal style.
%R 10.18653/v1/P19-1609
%U https://aclanthology.org/P19-1609/
%U https://doi.org/10.18653/v1/P19-1609
%P 6059-6064
Markdown (Informal)
[Automatic Grammatical Error Correction for Sequence-to-sequence Text Generation: An Empirical Study](https://aclanthology.org/P19-1609/) (Ge et al., ACL 2019)
ACL