@inproceedings{chen-etal-2019-numeracy,
    title = "Numeracy-600{K}: Learning Numeracy for Detecting Exaggerated Information in Market Comments",
    author = "Chen, Chung-Chi  and
      Huang, Hen-Hsen  and
      Takamura, Hiroya  and
      Chen, Hsin-Hsi",
    editor = "Korhonen, Anna  and
      Traum, David  and
      M{\`a}rquez, Llu{\'i}s",
    booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
    month = jul,
    year = "2019",
    address = "Florence, Italy",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/P19-1635/",
    doi = "10.18653/v1/P19-1635",
    pages = "6307--6313",
    abstract = "In this paper, we attempt to answer the question of whether neural network models can learn numeracy, which is the ability to predict the magnitude of a numeral at some specific position in a text description. A large benchmark dataset, called Numeracy-600K, is provided for the novel task. We explore several neural network models including CNN, GRU, BiGRU, CRNN, CNN-capsule, GRU-capsule, and BiGRU-capsule in the experiments. The results show that the BiGRU model gets the best micro-averaged F1 score of 80.16{\%}, and the GRU-capsule model gets the best macro-averaged F1 score of 64.71{\%}. Besides discussing the challenges through comprehensive experiments, we also present an important application scenario, i.e., detecting exaggerated information, for the task."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="chen-etal-2019-numeracy">
    <titleInfo>
        <title>Numeracy-600K: Learning Numeracy for Detecting Exaggerated Information in Market Comments</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Chung-Chi</namePart>
        <namePart type="family">Chen</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Hen-Hsen</namePart>
        <namePart type="family">Huang</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Hiroya</namePart>
        <namePart type="family">Takamura</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Hsin-Hsi</namePart>
        <namePart type="family">Chen</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2019-07</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Anna</namePart>
            <namePart type="family">Korhonen</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">David</namePart>
            <namePart type="family">Traum</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Lluís</namePart>
            <namePart type="family">Màrquez</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">Florence, Italy</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>In this paper, we attempt to answer the question of whether neural network models can learn numeracy, which is the ability to predict the magnitude of a numeral at some specific position in a text description. A large benchmark dataset, called Numeracy-600K, is provided for the novel task. We explore several neural network models including CNN, GRU, BiGRU, CRNN, CNN-capsule, GRU-capsule, and BiGRU-capsule in the experiments. The results show that the BiGRU model gets the best micro-averaged F1 score of 80.16%, and the GRU-capsule model gets the best macro-averaged F1 score of 64.71%. Besides discussing the challenges through comprehensive experiments, we also present an important application scenario, i.e., detecting exaggerated information, for the task.</abstract>
    <identifier type="citekey">chen-etal-2019-numeracy</identifier>
    <identifier type="doi">10.18653/v1/P19-1635</identifier>
    <location>
        <url>https://aclanthology.org/P19-1635/</url>
    </location>
    <part>
        <date>2019-07</date>
        <extent unit="page">
            <start>6307</start>
            <end>6313</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Numeracy-600K: Learning Numeracy for Detecting Exaggerated Information in Market Comments
%A Chen, Chung-Chi
%A Huang, Hen-Hsen
%A Takamura, Hiroya
%A Chen, Hsin-Hsi
%Y Korhonen, Anna
%Y Traum, David
%Y Màrquez, Lluís
%S Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics
%D 2019
%8 July
%I Association for Computational Linguistics
%C Florence, Italy
%F chen-etal-2019-numeracy
%X In this paper, we attempt to answer the question of whether neural network models can learn numeracy, which is the ability to predict the magnitude of a numeral at some specific position in a text description. A large benchmark dataset, called Numeracy-600K, is provided for the novel task. We explore several neural network models including CNN, GRU, BiGRU, CRNN, CNN-capsule, GRU-capsule, and BiGRU-capsule in the experiments. The results show that the BiGRU model gets the best micro-averaged F1 score of 80.16%, and the GRU-capsule model gets the best macro-averaged F1 score of 64.71%. Besides discussing the challenges through comprehensive experiments, we also present an important application scenario, i.e., detecting exaggerated information, for the task.
%R 10.18653/v1/P19-1635
%U https://aclanthology.org/P19-1635/
%U https://doi.org/10.18653/v1/P19-1635
%P 6307-6313
Markdown (Informal)
[Numeracy-600K: Learning Numeracy for Detecting Exaggerated Information in Market Comments](https://aclanthology.org/P19-1635/) (Chen et al., ACL 2019)
ACL