@inproceedings{chalkidis-etal-2019-large,
title = "Large-Scale Multi-Label Text Classification on {EU} Legislation",
author = "Chalkidis, Ilias and
Fergadiotis, Emmanouil and
Malakasiotis, Prodromos and
Androutsopoulos, Ion",
editor = "Korhonen, Anna and
Traum, David and
M{\`a}rquez, Llu{\'i}s",
booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P19-1636/",
doi = "10.18653/v1/P19-1636",
pages = "6314--6322",
abstract = "We consider Large-Scale Multi-Label Text Classification (LMTC) in the legal domain. We release a new dataset of 57k legislative documents from EUR-LEX, annotated with {\ensuremath{\sim}}4.3k EUROVOC labels, which is suitable for LMTC, few- and zero-shot learning. Experimenting with several neural classifiers, we show that BIGRUs with label-wise attention perform better than other current state of the art methods. Domain-specific WORD2VEC and context-sensitive ELMO embeddings further improve performance. We also find that considering only particular zones of the documents is sufficient. This allows us to bypass BERT`s maximum text length limit and fine-tune BERT, obtaining the best results in all but zero-shot learning cases."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="chalkidis-etal-2019-large">
<titleInfo>
<title>Large-Scale Multi-Label Text Classification on EU Legislation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ilias</namePart>
<namePart type="family">Chalkidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Emmanouil</namePart>
<namePart type="family">Fergadiotis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Prodromos</namePart>
<namePart type="family">Malakasiotis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ion</namePart>
<namePart type="family">Androutsopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Korhonen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Traum</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lluís</namePart>
<namePart type="family">Màrquez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Florence, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We consider Large-Scale Multi-Label Text Classification (LMTC) in the legal domain. We release a new dataset of 57k legislative documents from EUR-LEX, annotated with \ensuremath\sim4.3k EUROVOC labels, which is suitable for LMTC, few- and zero-shot learning. Experimenting with several neural classifiers, we show that BIGRUs with label-wise attention perform better than other current state of the art methods. Domain-specific WORD2VEC and context-sensitive ELMO embeddings further improve performance. We also find that considering only particular zones of the documents is sufficient. This allows us to bypass BERT‘s maximum text length limit and fine-tune BERT, obtaining the best results in all but zero-shot learning cases.</abstract>
<identifier type="citekey">chalkidis-etal-2019-large</identifier>
<identifier type="doi">10.18653/v1/P19-1636</identifier>
<location>
<url>https://aclanthology.org/P19-1636/</url>
</location>
<part>
<date>2019-07</date>
<extent unit="page">
<start>6314</start>
<end>6322</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Large-Scale Multi-Label Text Classification on EU Legislation
%A Chalkidis, Ilias
%A Fergadiotis, Emmanouil
%A Malakasiotis, Prodromos
%A Androutsopoulos, Ion
%Y Korhonen, Anna
%Y Traum, David
%Y Màrquez, Lluís
%S Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics
%D 2019
%8 July
%I Association for Computational Linguistics
%C Florence, Italy
%F chalkidis-etal-2019-large
%X We consider Large-Scale Multi-Label Text Classification (LMTC) in the legal domain. We release a new dataset of 57k legislative documents from EUR-LEX, annotated with \ensuremath\sim4.3k EUROVOC labels, which is suitable for LMTC, few- and zero-shot learning. Experimenting with several neural classifiers, we show that BIGRUs with label-wise attention perform better than other current state of the art methods. Domain-specific WORD2VEC and context-sensitive ELMO embeddings further improve performance. We also find that considering only particular zones of the documents is sufficient. This allows us to bypass BERT‘s maximum text length limit and fine-tune BERT, obtaining the best results in all but zero-shot learning cases.
%R 10.18653/v1/P19-1636
%U https://aclanthology.org/P19-1636/
%U https://doi.org/10.18653/v1/P19-1636
%P 6314-6322
Markdown (Informal)
[Large-Scale Multi-Label Text Classification on EU Legislation](https://aclanthology.org/P19-1636/) (Chalkidis et al., ACL 2019)
ACL
- Ilias Chalkidis, Emmanouil Fergadiotis, Prodromos Malakasiotis, and Ion Androutsopoulos. 2019. Large-Scale Multi-Label Text Classification on EU Legislation. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 6314–6322, Florence, Italy. Association for Computational Linguistics.