Symbolic Inductive Bias for Visually Grounded Learning of Spoken Language

Grzegorz Chrupała


Abstract
A widespread approach to processing spoken language is to first automatically transcribe it into text. An alternative is to use an end-to-end approach: recent works have proposed to learn semantic embeddings of spoken language from images with spoken captions, without an intermediate transcription step. We propose to use multitask learning to exploit existing transcribed speech within the end-to-end setting. We describe a three-task architecture which combines the objectives of matching spoken captions with corresponding images, speech with text, and text with images. We show that the addition of the speech/text task leads to substantial performance improvements on image retrieval when compared to training the speech/image task in isolation. We conjecture that this is due to a strong inductive bias transcribed speech provides to the model, and offer supporting evidence for this.
Anthology ID:
P19-1647
Volume:
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics
Month:
July
Year:
2019
Address:
Florence, Italy
Editors:
Anna Korhonen, David Traum, Lluís Màrquez
Venue:
ACL
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
6452–6462
Language:
URL:
https://aclanthology.org/P19-1647
DOI:
10.18653/v1/P19-1647
Bibkey:
Cite (ACL):
Grzegorz Chrupała. 2019. Symbolic Inductive Bias for Visually Grounded Learning of Spoken Language. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 6452–6462, Florence, Italy. Association for Computational Linguistics.
Cite (Informal):
Symbolic Inductive Bias for Visually Grounded Learning of Spoken Language (Chrupała, ACL 2019)
Copy Citation:
PDF:
https://aclanthology.org/P19-1647.pdf
Code
 gchrupala/symbolic-bias