@article{anderson-etal-2017-visually,
title = "Visually Grounded and Textual Semantic Models Differentially Decode Brain Activity Associated with Concrete and Abstract Nouns",
author = "Anderson, Andrew J. and
Kiela, Douwe and
Clark, Stephen and
Poesio, Massimo",
editor = "Lee, Lillian and
Johnson, Mark and
Toutanova, Kristina",
journal = "Transactions of the Association for Computational Linguistics",
volume = "5",
year = "2017",
address = "Cambridge, MA",
publisher = "MIT Press",
url = "https://aclanthology.org/Q17-1002/",
doi = "10.1162/tacl_a_00043",
pages = "17--30",
abstract = "Important advances have recently been made using computational semantic models to decode brain activity patterns associated with concepts; however, this work has almost exclusively focused on concrete nouns. How well these models extend to decoding abstract nouns is largely unknown. We address this question by applying state-of-the-art computational models to decode functional Magnetic Resonance Imaging (fMRI) activity patterns, elicited by participants reading and imagining a diverse set of both concrete and abstract nouns. One of the models we use is linguistic, exploiting the recent word2vec skipgram approach trained on Wikipedia. The second is visually grounded, using deep convolutional neural networks trained on Google Images. Dual coding theory considers concrete concepts to be encoded in the brain both linguistically and visually, and abstract concepts only linguistically. Splitting the fMRI data according to human concreteness ratings, we indeed observe that both models significantly decode the most concrete nouns; however, accuracy is significantly greater using the text-based models for the most abstract nouns. More generally this confirms that current computational models are sufficiently advanced to assist in investigating the representational structure of abstract concepts in the brain."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="anderson-etal-2017-visually">
<titleInfo>
<title>Visually Grounded and Textual Semantic Models Differentially Decode Brain Activity Associated with Concrete and Abstract Nouns</title>
</titleInfo>
<name type="personal">
<namePart type="given">Andrew</namePart>
<namePart type="given">J</namePart>
<namePart type="family">Anderson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Douwe</namePart>
<namePart type="family">Kiela</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stephen</namePart>
<namePart type="family">Clark</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Massimo</namePart>
<namePart type="family">Poesio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<genre authority="bibutilsgt">journal article</genre>
<relatedItem type="host">
<titleInfo>
<title>Transactions of the Association for Computational Linguistics</title>
</titleInfo>
<originInfo>
<issuance>continuing</issuance>
<publisher>MIT Press</publisher>
<place>
<placeTerm type="text">Cambridge, MA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">periodical</genre>
<genre authority="bibutilsgt">academic journal</genre>
</relatedItem>
<abstract>Important advances have recently been made using computational semantic models to decode brain activity patterns associated with concepts; however, this work has almost exclusively focused on concrete nouns. How well these models extend to decoding abstract nouns is largely unknown. We address this question by applying state-of-the-art computational models to decode functional Magnetic Resonance Imaging (fMRI) activity patterns, elicited by participants reading and imagining a diverse set of both concrete and abstract nouns. One of the models we use is linguistic, exploiting the recent word2vec skipgram approach trained on Wikipedia. The second is visually grounded, using deep convolutional neural networks trained on Google Images. Dual coding theory considers concrete concepts to be encoded in the brain both linguistically and visually, and abstract concepts only linguistically. Splitting the fMRI data according to human concreteness ratings, we indeed observe that both models significantly decode the most concrete nouns; however, accuracy is significantly greater using the text-based models for the most abstract nouns. More generally this confirms that current computational models are sufficiently advanced to assist in investigating the representational structure of abstract concepts in the brain.</abstract>
<identifier type="citekey">anderson-etal-2017-visually</identifier>
<identifier type="doi">10.1162/tacl_a_00043</identifier>
<location>
<url>https://aclanthology.org/Q17-1002/</url>
</location>
<part>
<date>2017</date>
<detail type="volume"><number>5</number></detail>
<extent unit="page">
<start>17</start>
<end>30</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Journal Article
%T Visually Grounded and Textual Semantic Models Differentially Decode Brain Activity Associated with Concrete and Abstract Nouns
%A Anderson, Andrew J.
%A Kiela, Douwe
%A Clark, Stephen
%A Poesio, Massimo
%J Transactions of the Association for Computational Linguistics
%D 2017
%V 5
%I MIT Press
%C Cambridge, MA
%F anderson-etal-2017-visually
%X Important advances have recently been made using computational semantic models to decode brain activity patterns associated with concepts; however, this work has almost exclusively focused on concrete nouns. How well these models extend to decoding abstract nouns is largely unknown. We address this question by applying state-of-the-art computational models to decode functional Magnetic Resonance Imaging (fMRI) activity patterns, elicited by participants reading and imagining a diverse set of both concrete and abstract nouns. One of the models we use is linguistic, exploiting the recent word2vec skipgram approach trained on Wikipedia. The second is visually grounded, using deep convolutional neural networks trained on Google Images. Dual coding theory considers concrete concepts to be encoded in the brain both linguistically and visually, and abstract concepts only linguistically. Splitting the fMRI data according to human concreteness ratings, we indeed observe that both models significantly decode the most concrete nouns; however, accuracy is significantly greater using the text-based models for the most abstract nouns. More generally this confirms that current computational models are sufficiently advanced to assist in investigating the representational structure of abstract concepts in the brain.
%R 10.1162/tacl_a_00043
%U https://aclanthology.org/Q17-1002/
%U https://doi.org/10.1162/tacl_a_00043
%P 17-30
Markdown (Informal)
[Visually Grounded and Textual Semantic Models Differentially Decode Brain Activity Associated with Concrete and Abstract Nouns](https://aclanthology.org/Q17-1002/) (Anderson et al., TACL 2017)
ACL