@inproceedings{bevilacqua-navigli-2019-quasi,
title = "Quasi Bidirectional Encoder Representations from Transformers for Word Sense Disambiguation",
author = "Bevilacqua, Michele and
Navigli, Roberto",
editor = "Mitkov, Ruslan and
Angelova, Galia",
booktitle = "Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2019)",
month = sep,
year = "2019",
address = "Varna, Bulgaria",
publisher = "INCOMA Ltd.",
url = "https://aclanthology.org/R19-1015/",
doi = "10.26615/978-954-452-056-4_015",
pages = "122--131",
abstract = "While contextualized embeddings have produced performance breakthroughs in many Natural Language Processing (NLP) tasks, Word Sense Disambiguation (WSD) has not benefited from them yet. In this paper, we introduce QBERT, a Transformer-based architecture for contextualized embeddings which makes use of a co-attentive layer to produce more deeply bidirectional representations, better-fitting for the WSD task. As a result, we are able to train a WSD system that beats the state of the art on the concatenation of all evaluation datasets by over 3 points, also outperforming a comparable model using ELMo."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="bevilacqua-navigli-2019-quasi">
<titleInfo>
<title>Quasi Bidirectional Encoder Representations from Transformers for Word Sense Disambiguation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Michele</namePart>
<namePart type="family">Bevilacqua</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Roberto</namePart>
<namePart type="family">Navigli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2019)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ruslan</namePart>
<namePart type="family">Mitkov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Galia</namePart>
<namePart type="family">Angelova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>INCOMA Ltd.</publisher>
<place>
<placeTerm type="text">Varna, Bulgaria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>While contextualized embeddings have produced performance breakthroughs in many Natural Language Processing (NLP) tasks, Word Sense Disambiguation (WSD) has not benefited from them yet. In this paper, we introduce QBERT, a Transformer-based architecture for contextualized embeddings which makes use of a co-attentive layer to produce more deeply bidirectional representations, better-fitting for the WSD task. As a result, we are able to train a WSD system that beats the state of the art on the concatenation of all evaluation datasets by over 3 points, also outperforming a comparable model using ELMo.</abstract>
<identifier type="citekey">bevilacqua-navigli-2019-quasi</identifier>
<identifier type="doi">10.26615/978-954-452-056-4_015</identifier>
<location>
<url>https://aclanthology.org/R19-1015/</url>
</location>
<part>
<date>2019-09</date>
<extent unit="page">
<start>122</start>
<end>131</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Quasi Bidirectional Encoder Representations from Transformers for Word Sense Disambiguation
%A Bevilacqua, Michele
%A Navigli, Roberto
%Y Mitkov, Ruslan
%Y Angelova, Galia
%S Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2019)
%D 2019
%8 September
%I INCOMA Ltd.
%C Varna, Bulgaria
%F bevilacqua-navigli-2019-quasi
%X While contextualized embeddings have produced performance breakthroughs in many Natural Language Processing (NLP) tasks, Word Sense Disambiguation (WSD) has not benefited from them yet. In this paper, we introduce QBERT, a Transformer-based architecture for contextualized embeddings which makes use of a co-attentive layer to produce more deeply bidirectional representations, better-fitting for the WSD task. As a result, we are able to train a WSD system that beats the state of the art on the concatenation of all evaluation datasets by over 3 points, also outperforming a comparable model using ELMo.
%R 10.26615/978-954-452-056-4_015
%U https://aclanthology.org/R19-1015/
%U https://doi.org/10.26615/978-954-452-056-4_015
%P 122-131
Markdown (Informal)
[Quasi Bidirectional Encoder Representations from Transformers for Word Sense Disambiguation](https://aclanthology.org/R19-1015/) (Bevilacqua & Navigli, RANLP 2019)
ACL