@inproceedings{shutova-etal-2017-semantic,
title = "Semantic Frames and Visual Scenes: Learning Semantic Role Inventories from Image and Video Descriptions",
author = "Shutova, Ekaterina and
Wundsam, Andreas and
Yannakoudakis, Helen",
editor = "Ide, Nancy and
Herbelot, Aur{\'e}lie and
M{\`a}rquez, Llu{\'i}s",
booktitle = "Proceedings of the 6th Joint Conference on Lexical and Computational Semantics (*{SEM} 2017)",
month = aug,
year = "2017",
address = "Vancouver, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/S17-1018/",
doi = "10.18653/v1/S17-1018",
pages = "149--154",
abstract = "Frame-semantic parsing and semantic role labelling, that aim to automatically assign semantic roles to arguments of verbs in a sentence, have become an active strand of research in NLP. However, to date these methods have relied on a predefined inventory of semantic roles. In this paper, we present a method to automatically learn argument role inventories for verbs from large corpora of text, images and videos. We evaluate the method against manually constructed role inventories in FrameNet and show that the visual model outperforms the language-only model and operates with a high precision."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="shutova-etal-2017-semantic">
<titleInfo>
<title>Semantic Frames and Visual Scenes: Learning Semantic Role Inventories from Image and Video Descriptions</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andreas</namePart>
<namePart type="family">Wundsam</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Helen</namePart>
<namePart type="family">Yannakoudakis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 6th Joint Conference on Lexical and Computational Semantics (*SEM 2017)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nancy</namePart>
<namePart type="family">Ide</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aurélie</namePart>
<namePart type="family">Herbelot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lluís</namePart>
<namePart type="family">Màrquez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vancouver, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Frame-semantic parsing and semantic role labelling, that aim to automatically assign semantic roles to arguments of verbs in a sentence, have become an active strand of research in NLP. However, to date these methods have relied on a predefined inventory of semantic roles. In this paper, we present a method to automatically learn argument role inventories for verbs from large corpora of text, images and videos. We evaluate the method against manually constructed role inventories in FrameNet and show that the visual model outperforms the language-only model and operates with a high precision.</abstract>
<identifier type="citekey">shutova-etal-2017-semantic</identifier>
<identifier type="doi">10.18653/v1/S17-1018</identifier>
<location>
<url>https://aclanthology.org/S17-1018/</url>
</location>
<part>
<date>2017-08</date>
<extent unit="page">
<start>149</start>
<end>154</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Semantic Frames and Visual Scenes: Learning Semantic Role Inventories from Image and Video Descriptions
%A Shutova, Ekaterina
%A Wundsam, Andreas
%A Yannakoudakis, Helen
%Y Ide, Nancy
%Y Herbelot, Aurélie
%Y Màrquez, Lluís
%S Proceedings of the 6th Joint Conference on Lexical and Computational Semantics (*SEM 2017)
%D 2017
%8 August
%I Association for Computational Linguistics
%C Vancouver, Canada
%F shutova-etal-2017-semantic
%X Frame-semantic parsing and semantic role labelling, that aim to automatically assign semantic roles to arguments of verbs in a sentence, have become an active strand of research in NLP. However, to date these methods have relied on a predefined inventory of semantic roles. In this paper, we present a method to automatically learn argument role inventories for verbs from large corpora of text, images and videos. We evaluate the method against manually constructed role inventories in FrameNet and show that the visual model outperforms the language-only model and operates with a high precision.
%R 10.18653/v1/S17-1018
%U https://aclanthology.org/S17-1018/
%U https://doi.org/10.18653/v1/S17-1018
%P 149-154
Markdown (Informal)
[Semantic Frames and Visual Scenes: Learning Semantic Role Inventories from Image and Video Descriptions](https://aclanthology.org/S17-1018/) (Shutova et al., *SEM 2017)
ACL