@inproceedings{becker-etal-2017-classifying,
title = "Classifying Semantic Clause Types: Modeling Context and Genre Characteristics with Recurrent Neural Networks and Attention",
author = "Becker, Maria and
Staniek, Michael and
Nastase, Vivi and
Palmer, Alexis and
Frank, Anette",
editor = "Ide, Nancy and
Herbelot, Aur{\'e}lie and
M{\`a}rquez, Llu{\'i}s",
booktitle = "Proceedings of the 6th Joint Conference on Lexical and Computational Semantics (*{SEM} 2017)",
month = aug,
year = "2017",
address = "Vancouver, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/S17-1027/",
doi = "10.18653/v1/S17-1027",
pages = "230--240",
abstract = "Detecting aspectual properties of clauses in the form of situation entity types has been shown to depend on a combination of syntactic-semantic and contextual features. We explore this task in a deep-learning framework, where tuned word representations capture lexical, syntactic and semantic features. We introduce an attention mechanism that pinpoints relevant context not only for the current instance, but also for the larger context. Apart from implicitly capturing task relevant features, the advantage of our neural model is that it avoids the need to reproduce linguistic features for other languages and is thus more easily transferable. We present experiments for English and German that achieve competitive performance. We present a novel take on modeling and exploiting genre information and showcase the adaptation of our system from one language to another."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="becker-etal-2017-classifying">
<titleInfo>
<title>Classifying Semantic Clause Types: Modeling Context and Genre Characteristics with Recurrent Neural Networks and Attention</title>
</titleInfo>
<name type="personal">
<namePart type="given">Maria</namePart>
<namePart type="family">Becker</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michael</namePart>
<namePart type="family">Staniek</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vivi</namePart>
<namePart type="family">Nastase</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexis</namePart>
<namePart type="family">Palmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anette</namePart>
<namePart type="family">Frank</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 6th Joint Conference on Lexical and Computational Semantics (*SEM 2017)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nancy</namePart>
<namePart type="family">Ide</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aurélie</namePart>
<namePart type="family">Herbelot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lluís</namePart>
<namePart type="family">Màrquez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vancouver, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Detecting aspectual properties of clauses in the form of situation entity types has been shown to depend on a combination of syntactic-semantic and contextual features. We explore this task in a deep-learning framework, where tuned word representations capture lexical, syntactic and semantic features. We introduce an attention mechanism that pinpoints relevant context not only for the current instance, but also for the larger context. Apart from implicitly capturing task relevant features, the advantage of our neural model is that it avoids the need to reproduce linguistic features for other languages and is thus more easily transferable. We present experiments for English and German that achieve competitive performance. We present a novel take on modeling and exploiting genre information and showcase the adaptation of our system from one language to another.</abstract>
<identifier type="citekey">becker-etal-2017-classifying</identifier>
<identifier type="doi">10.18653/v1/S17-1027</identifier>
<location>
<url>https://aclanthology.org/S17-1027/</url>
</location>
<part>
<date>2017-08</date>
<extent unit="page">
<start>230</start>
<end>240</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Classifying Semantic Clause Types: Modeling Context and Genre Characteristics with Recurrent Neural Networks and Attention
%A Becker, Maria
%A Staniek, Michael
%A Nastase, Vivi
%A Palmer, Alexis
%A Frank, Anette
%Y Ide, Nancy
%Y Herbelot, Aurélie
%Y Màrquez, Lluís
%S Proceedings of the 6th Joint Conference on Lexical and Computational Semantics (*SEM 2017)
%D 2017
%8 August
%I Association for Computational Linguistics
%C Vancouver, Canada
%F becker-etal-2017-classifying
%X Detecting aspectual properties of clauses in the form of situation entity types has been shown to depend on a combination of syntactic-semantic and contextual features. We explore this task in a deep-learning framework, where tuned word representations capture lexical, syntactic and semantic features. We introduce an attention mechanism that pinpoints relevant context not only for the current instance, but also for the larger context. Apart from implicitly capturing task relevant features, the advantage of our neural model is that it avoids the need to reproduce linguistic features for other languages and is thus more easily transferable. We present experiments for English and German that achieve competitive performance. We present a novel take on modeling and exploiting genre information and showcase the adaptation of our system from one language to another.
%R 10.18653/v1/S17-1027
%U https://aclanthology.org/S17-1027/
%U https://doi.org/10.18653/v1/S17-1027
%P 230-240
Markdown (Informal)
[Classifying Semantic Clause Types: Modeling Context and Genre Characteristics with Recurrent Neural Networks and Attention](https://aclanthology.org/S17-1027/) (Becker et al., *SEM 2017)
ACL