@inproceedings{zhang-etal-2017-ynu,
title = "{YNU}-{HPCC} at {S}em{E}val 2017 Task 4: Using A Multi-Channel {CNN}-{LSTM} Model for Sentiment Classification",
author = "Zhang, Haowei and
Wang, Jin and
Zhang, Jixian and
Zhang, Xuejie",
editor = "Bethard, Steven and
Carpuat, Marine and
Apidianaki, Marianna and
Mohammad, Saif M. and
Cer, Daniel and
Jurgens, David",
booktitle = "Proceedings of the 11th International Workshop on Semantic Evaluation ({S}em{E}val-2017)",
month = aug,
year = "2017",
address = "Vancouver, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/S17-2134/",
doi = "10.18653/v1/S17-2134",
pages = "796--801",
abstract = "In this paper, we propose a multi-channel convolutional neural network-long short-term memory (CNN-LSTM) model that consists of two parts: multi-channel CNN and LSTM to analyze the sentiments of short English messages from Twitter. Un-like a conventional CNN, the proposed model applies a multi-channel strategy that uses several filters of different length to extract active local n-gram features in different scales. This information is then sequentially composed using LSTM. By combining both CNN and LSTM, we can consider both local information within tweets and long-distance dependency across tweets in the classification process. Officially released results show that our system outperforms the baseline algo-rithm."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zhang-etal-2017-ynu">
<titleInfo>
<title>YNU-HPCC at SemEval 2017 Task 4: Using A Multi-Channel CNN-LSTM Model for Sentiment Classification</title>
</titleInfo>
<name type="personal">
<namePart type="given">Haowei</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jin</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jixian</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xuejie</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bethard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marine</namePart>
<namePart type="family">Carpuat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saif</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Mohammad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">Cer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Jurgens</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vancouver, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper, we propose a multi-channel convolutional neural network-long short-term memory (CNN-LSTM) model that consists of two parts: multi-channel CNN and LSTM to analyze the sentiments of short English messages from Twitter. Un-like a conventional CNN, the proposed model applies a multi-channel strategy that uses several filters of different length to extract active local n-gram features in different scales. This information is then sequentially composed using LSTM. By combining both CNN and LSTM, we can consider both local information within tweets and long-distance dependency across tweets in the classification process. Officially released results show that our system outperforms the baseline algo-rithm.</abstract>
<identifier type="citekey">zhang-etal-2017-ynu</identifier>
<identifier type="doi">10.18653/v1/S17-2134</identifier>
<location>
<url>https://aclanthology.org/S17-2134/</url>
</location>
<part>
<date>2017-08</date>
<extent unit="page">
<start>796</start>
<end>801</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T YNU-HPCC at SemEval 2017 Task 4: Using A Multi-Channel CNN-LSTM Model for Sentiment Classification
%A Zhang, Haowei
%A Wang, Jin
%A Zhang, Jixian
%A Zhang, Xuejie
%Y Bethard, Steven
%Y Carpuat, Marine
%Y Apidianaki, Marianna
%Y Mohammad, Saif M.
%Y Cer, Daniel
%Y Jurgens, David
%S Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017)
%D 2017
%8 August
%I Association for Computational Linguistics
%C Vancouver, Canada
%F zhang-etal-2017-ynu
%X In this paper, we propose a multi-channel convolutional neural network-long short-term memory (CNN-LSTM) model that consists of two parts: multi-channel CNN and LSTM to analyze the sentiments of short English messages from Twitter. Un-like a conventional CNN, the proposed model applies a multi-channel strategy that uses several filters of different length to extract active local n-gram features in different scales. This information is then sequentially composed using LSTM. By combining both CNN and LSTM, we can consider both local information within tweets and long-distance dependency across tweets in the classification process. Officially released results show that our system outperforms the baseline algo-rithm.
%R 10.18653/v1/S17-2134
%U https://aclanthology.org/S17-2134/
%U https://doi.org/10.18653/v1/S17-2134
%P 796-801
Markdown (Informal)
[YNU-HPCC at SemEval 2017 Task 4: Using A Multi-Channel CNN-LSTM Model for Sentiment Classification](https://aclanthology.org/S17-2134/) (Zhang et al., SemEval 2017)
ACL