@inproceedings{gao-chen-2018-deepsa2018,
title = "deep{SA}2018 at {S}em{E}val-2018 Task 1: Multi-task Learning of Different Label for Affect in Tweets",
author = "Gao, Zi-Yuan and
Chen, Chia-Ping",
editor = "Apidianaki, Marianna and
Mohammad, Saif M. and
May, Jonathan and
Shutova, Ekaterina and
Bethard, Steven and
Carpuat, Marine",
booktitle = "Proceedings of the 12th International Workshop on Semantic Evaluation",
month = jun,
year = "2018",
address = "New Orleans, Louisiana",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/S18-1034",
doi = "10.18653/v1/S18-1034",
pages = "226--230",
abstract = "This paper describes our system implementation for subtask V-oc of SemEval-2018 Task 1: affect in tweets. We use multi-task learning method to learn shared representation, then learn the features for each task. There are five classification models in the proposed multi-task learning approach. These classification models are trained sequentially to learn different features for different classification tasks. In addition to the data released for SemEval-2018, we use datasets from previous SemEvals during system construction. Our Pearson correlation score is 0.638 on the official SemEval-2018 Task 1 test set.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="gao-chen-2018-deepsa2018">
<titleInfo>
<title>deepSA2018 at SemEval-2018 Task 1: Multi-task Learning of Different Label for Affect in Tweets</title>
</titleInfo>
<name type="personal">
<namePart type="given">Zi-Yuan</namePart>
<namePart type="family">Gao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chia-Ping</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 12th International Workshop on Semantic Evaluation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saif</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Mohammad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">May</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bethard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marine</namePart>
<namePart type="family">Carpuat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">New Orleans, Louisiana</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes our system implementation for subtask V-oc of SemEval-2018 Task 1: affect in tweets. We use multi-task learning method to learn shared representation, then learn the features for each task. There are five classification models in the proposed multi-task learning approach. These classification models are trained sequentially to learn different features for different classification tasks. In addition to the data released for SemEval-2018, we use datasets from previous SemEvals during system construction. Our Pearson correlation score is 0.638 on the official SemEval-2018 Task 1 test set.</abstract>
<identifier type="citekey">gao-chen-2018-deepsa2018</identifier>
<identifier type="doi">10.18653/v1/S18-1034</identifier>
<location>
<url>https://aclanthology.org/S18-1034</url>
</location>
<part>
<date>2018-06</date>
<extent unit="page">
<start>226</start>
<end>230</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T deepSA2018 at SemEval-2018 Task 1: Multi-task Learning of Different Label for Affect in Tweets
%A Gao, Zi-Yuan
%A Chen, Chia-Ping
%Y Apidianaki, Marianna
%Y Mohammad, Saif M.
%Y May, Jonathan
%Y Shutova, Ekaterina
%Y Bethard, Steven
%Y Carpuat, Marine
%S Proceedings of the 12th International Workshop on Semantic Evaluation
%D 2018
%8 June
%I Association for Computational Linguistics
%C New Orleans, Louisiana
%F gao-chen-2018-deepsa2018
%X This paper describes our system implementation for subtask V-oc of SemEval-2018 Task 1: affect in tweets. We use multi-task learning method to learn shared representation, then learn the features for each task. There are five classification models in the proposed multi-task learning approach. These classification models are trained sequentially to learn different features for different classification tasks. In addition to the data released for SemEval-2018, we use datasets from previous SemEvals during system construction. Our Pearson correlation score is 0.638 on the official SemEval-2018 Task 1 test set.
%R 10.18653/v1/S18-1034
%U https://aclanthology.org/S18-1034
%U https://doi.org/10.18653/v1/S18-1034
%P 226-230
Markdown (Informal)
[deepSA2018 at SemEval-2018 Task 1: Multi-task Learning of Different Label for Affect in Tweets](https://aclanthology.org/S18-1034) (Gao & Chen, SemEval 2018)
ACL