@inproceedings{gao-chen-2018-deepsa2018,
    title = "deep{SA}2018 at {S}em{E}val-2018 Task 1: Multi-task Learning of Different Label for Affect in Tweets",
    author = "Gao, Zi-Yuan  and
      Chen, Chia-Ping",
    editor = "Apidianaki, Marianna  and
      Mohammad, Saif M.  and
      May, Jonathan  and
      Shutova, Ekaterina  and
      Bethard, Steven  and
      Carpuat, Marine",
    booktitle = "Proceedings of the 12th International Workshop on Semantic Evaluation",
    month = jun,
    year = "2018",
    address = "New Orleans, Louisiana",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/S18-1034/",
    doi = "10.18653/v1/S18-1034",
    pages = "226--230",
    abstract = "This paper describes our system implementation for subtask V-oc of SemEval-2018 Task 1: affect in tweets. We use multi-task learning method to learn shared representation, then learn the features for each task. There are five classification models in the proposed multi-task learning approach. These classification models are trained sequentially to learn different features for different classification tasks. In addition to the data released for SemEval-2018, we use datasets from previous SemEvals during system construction. Our Pearson correlation score is 0.638 on the official SemEval-2018 Task 1 test set."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="gao-chen-2018-deepsa2018">
    <titleInfo>
        <title>deepSA2018 at SemEval-2018 Task 1: Multi-task Learning of Different Label for Affect in Tweets</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Zi-Yuan</namePart>
        <namePart type="family">Gao</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Chia-Ping</namePart>
        <namePart type="family">Chen</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2018-06</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the 12th International Workshop on Semantic Evaluation</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Marianna</namePart>
            <namePart type="family">Apidianaki</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Saif</namePart>
            <namePart type="given">M</namePart>
            <namePart type="family">Mohammad</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Jonathan</namePart>
            <namePart type="family">May</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Ekaterina</namePart>
            <namePart type="family">Shutova</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Steven</namePart>
            <namePart type="family">Bethard</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Marine</namePart>
            <namePart type="family">Carpuat</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">New Orleans, Louisiana</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>This paper describes our system implementation for subtask V-oc of SemEval-2018 Task 1: affect in tweets. We use multi-task learning method to learn shared representation, then learn the features for each task. There are five classification models in the proposed multi-task learning approach. These classification models are trained sequentially to learn different features for different classification tasks. In addition to the data released for SemEval-2018, we use datasets from previous SemEvals during system construction. Our Pearson correlation score is 0.638 on the official SemEval-2018 Task 1 test set.</abstract>
    <identifier type="citekey">gao-chen-2018-deepsa2018</identifier>
    <identifier type="doi">10.18653/v1/S18-1034</identifier>
    <location>
        <url>https://aclanthology.org/S18-1034/</url>
    </location>
    <part>
        <date>2018-06</date>
        <extent unit="page">
            <start>226</start>
            <end>230</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T deepSA2018 at SemEval-2018 Task 1: Multi-task Learning of Different Label for Affect in Tweets
%A Gao, Zi-Yuan
%A Chen, Chia-Ping
%Y Apidianaki, Marianna
%Y Mohammad, Saif M.
%Y May, Jonathan
%Y Shutova, Ekaterina
%Y Bethard, Steven
%Y Carpuat, Marine
%S Proceedings of the 12th International Workshop on Semantic Evaluation
%D 2018
%8 June
%I Association for Computational Linguistics
%C New Orleans, Louisiana
%F gao-chen-2018-deepsa2018
%X This paper describes our system implementation for subtask V-oc of SemEval-2018 Task 1: affect in tweets. We use multi-task learning method to learn shared representation, then learn the features for each task. There are five classification models in the proposed multi-task learning approach. These classification models are trained sequentially to learn different features for different classification tasks. In addition to the data released for SemEval-2018, we use datasets from previous SemEvals during system construction. Our Pearson correlation score is 0.638 on the official SemEval-2018 Task 1 test set.
%R 10.18653/v1/S18-1034
%U https://aclanthology.org/S18-1034/
%U https://doi.org/10.18653/v1/S18-1034
%P 226-230
Markdown (Informal)
[deepSA2018 at SemEval-2018 Task 1: Multi-task Learning of Different Label for Affect in Tweets](https://aclanthology.org/S18-1034/) (Gao & Chen, SemEval 2018)
ACL