@inproceedings{narwekar-girju-2018-uiuc,
title = "{UIUC} at {S}em{E}val-2018 Task 1: Recognizing Affect with Ensemble Models",
author = "Narwekar, Abhishek Avinash and
Girju, Roxana",
editor = "Apidianaki, Marianna and
Mohammad, Saif M. and
May, Jonathan and
Shutova, Ekaterina and
Bethard, Steven and
Carpuat, Marine",
booktitle = "Proceedings of the 12th International Workshop on Semantic Evaluation",
month = jun,
year = "2018",
address = "New Orleans, Louisiana",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/S18-1057",
doi = "10.18653/v1/S18-1057",
pages = "377--384",
abstract = "Our submission to the SemEval-2018 Task1: Affect in Tweets shared task competition is a supervised learning model relying on standard lexicon features coupled with word embedding features. We used an ensemble of diverse models, including random forests, gradient boosted trees, and linear models, corrected for training-development set mismatch. We submitted the system{'}s output for subtasks 1 (emotion intensity prediction), 2 (emotion ordinal classification), 3 (valence intensity regression) and 4 (valence ordinal classification), for English tweets. We placed 25th, 19th, 24th and 15th in the four subtasks respectively. The baseline considered was an SVM (Support Vector Machines) model with linear kernel on the lexicon and embedding based features. Our system{'}s final performance measured in Pearson correlation scores outperformed the baseline by a margin of 2.2{\%} to 14.6{\%} across all tasks.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="narwekar-girju-2018-uiuc">
<titleInfo>
<title>UIUC at SemEval-2018 Task 1: Recognizing Affect with Ensemble Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Abhishek</namePart>
<namePart type="given">Avinash</namePart>
<namePart type="family">Narwekar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Roxana</namePart>
<namePart type="family">Girju</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 12th International Workshop on Semantic Evaluation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saif</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Mohammad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">May</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bethard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marine</namePart>
<namePart type="family">Carpuat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">New Orleans, Louisiana</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Our submission to the SemEval-2018 Task1: Affect in Tweets shared task competition is a supervised learning model relying on standard lexicon features coupled with word embedding features. We used an ensemble of diverse models, including random forests, gradient boosted trees, and linear models, corrected for training-development set mismatch. We submitted the system’s output for subtasks 1 (emotion intensity prediction), 2 (emotion ordinal classification), 3 (valence intensity regression) and 4 (valence ordinal classification), for English tweets. We placed 25th, 19th, 24th and 15th in the four subtasks respectively. The baseline considered was an SVM (Support Vector Machines) model with linear kernel on the lexicon and embedding based features. Our system’s final performance measured in Pearson correlation scores outperformed the baseline by a margin of 2.2% to 14.6% across all tasks.</abstract>
<identifier type="citekey">narwekar-girju-2018-uiuc</identifier>
<identifier type="doi">10.18653/v1/S18-1057</identifier>
<location>
<url>https://aclanthology.org/S18-1057</url>
</location>
<part>
<date>2018-06</date>
<extent unit="page">
<start>377</start>
<end>384</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T UIUC at SemEval-2018 Task 1: Recognizing Affect with Ensemble Models
%A Narwekar, Abhishek Avinash
%A Girju, Roxana
%Y Apidianaki, Marianna
%Y Mohammad, Saif M.
%Y May, Jonathan
%Y Shutova, Ekaterina
%Y Bethard, Steven
%Y Carpuat, Marine
%S Proceedings of the 12th International Workshop on Semantic Evaluation
%D 2018
%8 June
%I Association for Computational Linguistics
%C New Orleans, Louisiana
%F narwekar-girju-2018-uiuc
%X Our submission to the SemEval-2018 Task1: Affect in Tweets shared task competition is a supervised learning model relying on standard lexicon features coupled with word embedding features. We used an ensemble of diverse models, including random forests, gradient boosted trees, and linear models, corrected for training-development set mismatch. We submitted the system’s output for subtasks 1 (emotion intensity prediction), 2 (emotion ordinal classification), 3 (valence intensity regression) and 4 (valence ordinal classification), for English tweets. We placed 25th, 19th, 24th and 15th in the four subtasks respectively. The baseline considered was an SVM (Support Vector Machines) model with linear kernel on the lexicon and embedding based features. Our system’s final performance measured in Pearson correlation scores outperformed the baseline by a margin of 2.2% to 14.6% across all tasks.
%R 10.18653/v1/S18-1057
%U https://aclanthology.org/S18-1057
%U https://doi.org/10.18653/v1/S18-1057
%P 377-384
Markdown (Informal)
[UIUC at SemEval-2018 Task 1: Recognizing Affect with Ensemble Models](https://aclanthology.org/S18-1057) (Narwekar & Girju, SemEval 2018)
ACL