@inproceedings{ghosh-veale-2018-ironymagnet,
title = "{I}rony{M}agnet at {S}em{E}val-2018 Task 3: A {S}iamese network for Irony detection in Social media",
author = "Ghosh, Aniruddha and
Veale, Tony",
editor = "Apidianaki, Marianna and
Mohammad, Saif M. and
May, Jonathan and
Shutova, Ekaterina and
Bethard, Steven and
Carpuat, Marine",
booktitle = "Proceedings of the 12th International Workshop on Semantic Evaluation",
month = jun,
year = "2018",
address = "New Orleans, Louisiana",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/S18-1093/",
doi = "10.18653/v1/S18-1093",
pages = "570--575",
abstract = "This paper describes our system, entitled IronyMagnet, for the 3rd Task of the SemEval 2018 workshop, {\textquotedblleft}Irony Detection in English Tweets{\textquotedblright}. In Task 1, irony classification task has been considered as a binary classification task. Now for the first time, finer categories of irony are considered as part of a shared task. In task 2, three types of irony are considered; {\textquotedblleft}Irony by contrast{\textquotedblright} - ironic instances where evaluative expression portrays inverse polarity (positive, negative) of the literal proposition; {\textquotedblleft}Situational irony{\textquotedblright} - ironic instances where output of a situation do not comply with its expectation; {\textquotedblleft}Other verbal irony{\textquotedblright} - instances where ironic intent does not rely on polarity contrast or unexpected outcome. We proposed a Siamese neural network for irony detection, which is consisted of two subnetworks, each containing a long short term memory layer(LSTM) and an embedding layer initialized with vectors from Glove word embedding 1 . The system achieved a f-score of 0.72, and 0.50 in task 1, and task 2 respectively."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ghosh-veale-2018-ironymagnet">
<titleInfo>
<title>IronyMagnet at SemEval-2018 Task 3: A Siamese network for Irony detection in Social media</title>
</titleInfo>
<name type="personal">
<namePart type="given">Aniruddha</namePart>
<namePart type="family">Ghosh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tony</namePart>
<namePart type="family">Veale</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 12th International Workshop on Semantic Evaluation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saif</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Mohammad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">May</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bethard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marine</namePart>
<namePart type="family">Carpuat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">New Orleans, Louisiana</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes our system, entitled IronyMagnet, for the 3rd Task of the SemEval 2018 workshop, “Irony Detection in English Tweets”. In Task 1, irony classification task has been considered as a binary classification task. Now for the first time, finer categories of irony are considered as part of a shared task. In task 2, three types of irony are considered; “Irony by contrast” - ironic instances where evaluative expression portrays inverse polarity (positive, negative) of the literal proposition; “Situational irony” - ironic instances where output of a situation do not comply with its expectation; “Other verbal irony” - instances where ironic intent does not rely on polarity contrast or unexpected outcome. We proposed a Siamese neural network for irony detection, which is consisted of two subnetworks, each containing a long short term memory layer(LSTM) and an embedding layer initialized with vectors from Glove word embedding 1 . The system achieved a f-score of 0.72, and 0.50 in task 1, and task 2 respectively.</abstract>
<identifier type="citekey">ghosh-veale-2018-ironymagnet</identifier>
<identifier type="doi">10.18653/v1/S18-1093</identifier>
<location>
<url>https://aclanthology.org/S18-1093/</url>
</location>
<part>
<date>2018-06</date>
<extent unit="page">
<start>570</start>
<end>575</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T IronyMagnet at SemEval-2018 Task 3: A Siamese network for Irony detection in Social media
%A Ghosh, Aniruddha
%A Veale, Tony
%Y Apidianaki, Marianna
%Y Mohammad, Saif M.
%Y May, Jonathan
%Y Shutova, Ekaterina
%Y Bethard, Steven
%Y Carpuat, Marine
%S Proceedings of the 12th International Workshop on Semantic Evaluation
%D 2018
%8 June
%I Association for Computational Linguistics
%C New Orleans, Louisiana
%F ghosh-veale-2018-ironymagnet
%X This paper describes our system, entitled IronyMagnet, for the 3rd Task of the SemEval 2018 workshop, “Irony Detection in English Tweets”. In Task 1, irony classification task has been considered as a binary classification task. Now for the first time, finer categories of irony are considered as part of a shared task. In task 2, three types of irony are considered; “Irony by contrast” - ironic instances where evaluative expression portrays inverse polarity (positive, negative) of the literal proposition; “Situational irony” - ironic instances where output of a situation do not comply with its expectation; “Other verbal irony” - instances where ironic intent does not rely on polarity contrast or unexpected outcome. We proposed a Siamese neural network for irony detection, which is consisted of two subnetworks, each containing a long short term memory layer(LSTM) and an embedding layer initialized with vectors from Glove word embedding 1 . The system achieved a f-score of 0.72, and 0.50 in task 1, and task 2 respectively.
%R 10.18653/v1/S18-1093
%U https://aclanthology.org/S18-1093/
%U https://doi.org/10.18653/v1/S18-1093
%P 570-575
Markdown (Informal)
[IronyMagnet at SemEval-2018 Task 3: A Siamese network for Irony detection in Social media](https://aclanthology.org/S18-1093/) (Ghosh & Veale, SemEval 2018)
ACL