@inproceedings{yin-etal-2018-ircms,
    title = "{IRCMS} at {S}em{E}val-2018 Task 7 : Evaluating a basic {CNN} Method and Traditional Pipeline Method for Relation Classification",
    author = "Yin, Zhongbo  and
      Luo, Zhunchen  and
      Luo, Wei  and
      Bin, Mao  and
      Tian, Changhai  and
      Ye, Yuming  and
      Wu, Shuai",
    editor = "Apidianaki, Marianna  and
      Mohammad, Saif M.  and
      May, Jonathan  and
      Shutova, Ekaterina  and
      Bethard, Steven  and
      Carpuat, Marine",
    booktitle = "Proceedings of the 12th International Workshop on Semantic Evaluation",
    month = jun,
    year = "2018",
    address = "New Orleans, Louisiana",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/S18-1129/",
    doi = "10.18653/v1/S18-1129",
    pages = "811--815",
    abstract = "This paper presents our participation for sub-task1 (1.1 and 1.2) in SemEval 2018 task 7: Semantic Relation Extraction and Classification in Scientific Papers (G{\'a}bor et al., 2018). We experimented on this task with two methods: CNN method and traditional pipeline method. We use the context between two entities (included) as input information for both methods, which extremely reduce the noise effect. For the CNN method, we construct a simple convolution neural network to automatically learn features from raw texts without any manual processing. Moreover, we use the softmax function to classify the entity pair into a specific relation category. For the traditional pipeline method, we use the Hackabout method as a representation which is described in section3.5. The CNN method{'}s result is much better than traditional pipeline method (49.1{\%} vs. 42.3{\%} and 71.1{\%} vs. 54.6{\%} )."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="yin-etal-2018-ircms">
    <titleInfo>
        <title>IRCMS at SemEval-2018 Task 7 : Evaluating a basic CNN Method and Traditional Pipeline Method for Relation Classification</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Zhongbo</namePart>
        <namePart type="family">Yin</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Zhunchen</namePart>
        <namePart type="family">Luo</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Wei</namePart>
        <namePart type="family">Luo</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Mao</namePart>
        <namePart type="family">Bin</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Changhai</namePart>
        <namePart type="family">Tian</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Yuming</namePart>
        <namePart type="family">Ye</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Shuai</namePart>
        <namePart type="family">Wu</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2018-06</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the 12th International Workshop on Semantic Evaluation</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Marianna</namePart>
            <namePart type="family">Apidianaki</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Saif</namePart>
            <namePart type="given">M</namePart>
            <namePart type="family">Mohammad</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Jonathan</namePart>
            <namePart type="family">May</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Ekaterina</namePart>
            <namePart type="family">Shutova</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Steven</namePart>
            <namePart type="family">Bethard</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Marine</namePart>
            <namePart type="family">Carpuat</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">New Orleans, Louisiana</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>This paper presents our participation for sub-task1 (1.1 and 1.2) in SemEval 2018 task 7: Semantic Relation Extraction and Classification in Scientific Papers (Gábor et al., 2018). We experimented on this task with two methods: CNN method and traditional pipeline method. We use the context between two entities (included) as input information for both methods, which extremely reduce the noise effect. For the CNN method, we construct a simple convolution neural network to automatically learn features from raw texts without any manual processing. Moreover, we use the softmax function to classify the entity pair into a specific relation category. For the traditional pipeline method, we use the Hackabout method as a representation which is described in section3.5. The CNN method’s result is much better than traditional pipeline method (49.1% vs. 42.3% and 71.1% vs. 54.6% ).</abstract>
    <identifier type="citekey">yin-etal-2018-ircms</identifier>
    <identifier type="doi">10.18653/v1/S18-1129</identifier>
    <location>
        <url>https://aclanthology.org/S18-1129/</url>
    </location>
    <part>
        <date>2018-06</date>
        <extent unit="page">
            <start>811</start>
            <end>815</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T IRCMS at SemEval-2018 Task 7 : Evaluating a basic CNN Method and Traditional Pipeline Method for Relation Classification
%A Yin, Zhongbo
%A Luo, Zhunchen
%A Luo, Wei
%A Bin, Mao
%A Tian, Changhai
%A Ye, Yuming
%A Wu, Shuai
%Y Apidianaki, Marianna
%Y Mohammad, Saif M.
%Y May, Jonathan
%Y Shutova, Ekaterina
%Y Bethard, Steven
%Y Carpuat, Marine
%S Proceedings of the 12th International Workshop on Semantic Evaluation
%D 2018
%8 June
%I Association for Computational Linguistics
%C New Orleans, Louisiana
%F yin-etal-2018-ircms
%X This paper presents our participation for sub-task1 (1.1 and 1.2) in SemEval 2018 task 7: Semantic Relation Extraction and Classification in Scientific Papers (Gábor et al., 2018). We experimented on this task with two methods: CNN method and traditional pipeline method. We use the context between two entities (included) as input information for both methods, which extremely reduce the noise effect. For the CNN method, we construct a simple convolution neural network to automatically learn features from raw texts without any manual processing. Moreover, we use the softmax function to classify the entity pair into a specific relation category. For the traditional pipeline method, we use the Hackabout method as a representation which is described in section3.5. The CNN method’s result is much better than traditional pipeline method (49.1% vs. 42.3% and 71.1% vs. 54.6% ).
%R 10.18653/v1/S18-1129
%U https://aclanthology.org/S18-1129/
%U https://doi.org/10.18653/v1/S18-1129
%P 811-815
Markdown (Informal)
[IRCMS at SemEval-2018 Task 7 : Evaluating a basic CNN Method and Traditional Pipeline Method for Relation Classification](https://aclanthology.org/S18-1129/) (Yin et al., SemEval 2018)
ACL