@inproceedings{king-etal-2018-unbnlp,
title = "{UNBNLP} at {S}em{E}val-2018 Task 10: Evaluating unsupervised approaches to capturing discriminative attributes",
author = "King, Milton and
Hakimi Parizi, Ali and
Cook, Paul",
editor = "Apidianaki, Marianna and
Mohammad, Saif M. and
May, Jonathan and
Shutova, Ekaterina and
Bethard, Steven and
Carpuat, Marine",
booktitle = "Proceedings of the 12th International Workshop on Semantic Evaluation",
month = jun,
year = "2018",
address = "New Orleans, Louisiana",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/S18-1168/",
doi = "10.18653/v1/S18-1168",
pages = "1013--1016",
abstract = "In this paper we present three unsupervised models for capturing discriminative attributes based on information from word embeddings, WordNet, and sentence-level word co-occurrence frequency. We show that, of these approaches, the simple approach based on word co-occurrence performs best. We further consider supervised and unsupervised approaches to combining information from these models, but these approaches do not improve on the word co-occurrence model."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="king-etal-2018-unbnlp">
<titleInfo>
<title>UNBNLP at SemEval-2018 Task 10: Evaluating unsupervised approaches to capturing discriminative attributes</title>
</titleInfo>
<name type="personal">
<namePart type="given">Milton</namePart>
<namePart type="family">King</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ali</namePart>
<namePart type="family">Hakimi Parizi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Paul</namePart>
<namePart type="family">Cook</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 12th International Workshop on Semantic Evaluation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saif</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Mohammad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">May</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bethard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marine</namePart>
<namePart type="family">Carpuat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">New Orleans, Louisiana</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper we present three unsupervised models for capturing discriminative attributes based on information from word embeddings, WordNet, and sentence-level word co-occurrence frequency. We show that, of these approaches, the simple approach based on word co-occurrence performs best. We further consider supervised and unsupervised approaches to combining information from these models, but these approaches do not improve on the word co-occurrence model.</abstract>
<identifier type="citekey">king-etal-2018-unbnlp</identifier>
<identifier type="doi">10.18653/v1/S18-1168</identifier>
<location>
<url>https://aclanthology.org/S18-1168/</url>
</location>
<part>
<date>2018-06</date>
<extent unit="page">
<start>1013</start>
<end>1016</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T UNBNLP at SemEval-2018 Task 10: Evaluating unsupervised approaches to capturing discriminative attributes
%A King, Milton
%A Hakimi Parizi, Ali
%A Cook, Paul
%Y Apidianaki, Marianna
%Y Mohammad, Saif M.
%Y May, Jonathan
%Y Shutova, Ekaterina
%Y Bethard, Steven
%Y Carpuat, Marine
%S Proceedings of the 12th International Workshop on Semantic Evaluation
%D 2018
%8 June
%I Association for Computational Linguistics
%C New Orleans, Louisiana
%F king-etal-2018-unbnlp
%X In this paper we present three unsupervised models for capturing discriminative attributes based on information from word embeddings, WordNet, and sentence-level word co-occurrence frequency. We show that, of these approaches, the simple approach based on word co-occurrence performs best. We further consider supervised and unsupervised approaches to combining information from these models, but these approaches do not improve on the word co-occurrence model.
%R 10.18653/v1/S18-1168
%U https://aclanthology.org/S18-1168/
%U https://doi.org/10.18653/v1/S18-1168
%P 1013-1016
Markdown (Informal)
[UNBNLP at SemEval-2018 Task 10: Evaluating unsupervised approaches to capturing discriminative attributes](https://aclanthology.org/S18-1168/) (King et al., SemEval 2018)
ACL