@inproceedings{zhang-carpuat-2018-umd,
title = "{UMD} at {S}em{E}val-2018 Task 10: Can Word Embeddings Capture Discriminative Attributes?",
author = "Zhang, Alexander and
Carpuat, Marine",
editor = "Apidianaki, Marianna and
Mohammad, Saif M. and
May, Jonathan and
Shutova, Ekaterina and
Bethard, Steven and
Carpuat, Marine",
booktitle = "Proceedings of the 12th International Workshop on Semantic Evaluation",
month = jun,
year = "2018",
address = "New Orleans, Louisiana",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/S18-1170/",
doi = "10.18653/v1/S18-1170",
pages = "1022--1026",
abstract = "We describe the University of Maryland`s submission to SemEval-018 Task 10, {\textquotedblleft}Capturing Discriminative Attributes{\textquotedblright}: given word triples (w1, w2, d), the goal is to determine whether d is a discriminating attribute belonging to w1 but not w2. Our study aims to determine whether word embeddings can address this challenging task. Our submission casts this problem as supervised binary classification using only word embedding features. Using a gaussian SVM model trained only on validation data results in an F-score of 60{\%}. We also show that cosine similarity features are more effective, both in unsupervised systems (F-score of 65{\%}) and supervised systems (F-score of 67{\%})."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zhang-carpuat-2018-umd">
<titleInfo>
<title>UMD at SemEval-2018 Task 10: Can Word Embeddings Capture Discriminative Attributes?</title>
</titleInfo>
<name type="personal">
<namePart type="given">Alexander</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marine</namePart>
<namePart type="family">Carpuat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 12th International Workshop on Semantic Evaluation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saif</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Mohammad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">May</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bethard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marine</namePart>
<namePart type="family">Carpuat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">New Orleans, Louisiana</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We describe the University of Maryland‘s submission to SemEval-018 Task 10, “Capturing Discriminative Attributes”: given word triples (w1, w2, d), the goal is to determine whether d is a discriminating attribute belonging to w1 but not w2. Our study aims to determine whether word embeddings can address this challenging task. Our submission casts this problem as supervised binary classification using only word embedding features. Using a gaussian SVM model trained only on validation data results in an F-score of 60%. We also show that cosine similarity features are more effective, both in unsupervised systems (F-score of 65%) and supervised systems (F-score of 67%).</abstract>
<identifier type="citekey">zhang-carpuat-2018-umd</identifier>
<identifier type="doi">10.18653/v1/S18-1170</identifier>
<location>
<url>https://aclanthology.org/S18-1170/</url>
</location>
<part>
<date>2018-06</date>
<extent unit="page">
<start>1022</start>
<end>1026</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T UMD at SemEval-2018 Task 10: Can Word Embeddings Capture Discriminative Attributes?
%A Zhang, Alexander
%A Carpuat, Marine
%Y Apidianaki, Marianna
%Y Mohammad, Saif M.
%Y May, Jonathan
%Y Shutova, Ekaterina
%Y Bethard, Steven
%Y Carpuat, Marine
%S Proceedings of the 12th International Workshop on Semantic Evaluation
%D 2018
%8 June
%I Association for Computational Linguistics
%C New Orleans, Louisiana
%F zhang-carpuat-2018-umd
%X We describe the University of Maryland‘s submission to SemEval-018 Task 10, “Capturing Discriminative Attributes”: given word triples (w1, w2, d), the goal is to determine whether d is a discriminating attribute belonging to w1 but not w2. Our study aims to determine whether word embeddings can address this challenging task. Our submission casts this problem as supervised binary classification using only word embedding features. Using a gaussian SVM model trained only on validation data results in an F-score of 60%. We also show that cosine similarity features are more effective, both in unsupervised systems (F-score of 65%) and supervised systems (F-score of 67%).
%R 10.18653/v1/S18-1170
%U https://aclanthology.org/S18-1170/
%U https://doi.org/10.18653/v1/S18-1170
%P 1022-1026
Markdown (Informal)
[UMD at SemEval-2018 Task 10: Can Word Embeddings Capture Discriminative Attributes?](https://aclanthology.org/S18-1170/) (Zhang & Carpuat, SemEval 2018)
ACL