@inproceedings{taslimipoor-etal-2019-gcn,
title = "{GCN}-Sem at {S}em{E}val-2019 Task 1: Semantic Parsing using Graph Convolutional and Recurrent Neural Networks",
author = "Taslimipoor, Shiva and
Rohanian, Omid and
Mo{\v{z}}e, Sara",
editor = "May, Jonathan and
Shutova, Ekaterina and
Herbelot, Aurelie and
Zhu, Xiaodan and
Apidianaki, Marianna and
Mohammad, Saif M.",
booktitle = "Proceedings of the 13th International Workshop on Semantic Evaluation",
month = jun,
year = "2019",
address = "Minneapolis, Minnesota, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/S19-2014",
doi = "10.18653/v1/S19-2014",
pages = "102--106",
abstract = "This paper describes the system submitted to the SemEval 2019 shared task 1 {`}Cross-lingual Semantic Parsing with UCCA{'}. We rely on the semantic dependency parse trees provided in the shared task which are converted from the original UCCA files and model the task as tagging. The aim is to predict the graph structure of the output along with the types of relations among the nodes. Our proposed neural architecture is composed of Graph Convolution and BiLSTM components. The layers of the system share their weights while predicting dependency links and semantic labels. The system is applied to the CONLLU format of the input data and is best suited for semantic dependency parsing.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="taslimipoor-etal-2019-gcn">
<titleInfo>
<title>GCN-Sem at SemEval-2019 Task 1: Semantic Parsing using Graph Convolutional and Recurrent Neural Networks</title>
</titleInfo>
<name type="personal">
<namePart type="given">Shiva</namePart>
<namePart type="family">Taslimipoor</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Omid</namePart>
<namePart type="family">Rohanian</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Može</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 13th International Workshop on Semantic Evaluation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">May</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aurelie</namePart>
<namePart type="family">Herbelot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaodan</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saif</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Mohammad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Minneapolis, Minnesota, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes the system submitted to the SemEval 2019 shared task 1 ‘Cross-lingual Semantic Parsing with UCCA’. We rely on the semantic dependency parse trees provided in the shared task which are converted from the original UCCA files and model the task as tagging. The aim is to predict the graph structure of the output along with the types of relations among the nodes. Our proposed neural architecture is composed of Graph Convolution and BiLSTM components. The layers of the system share their weights while predicting dependency links and semantic labels. The system is applied to the CONLLU format of the input data and is best suited for semantic dependency parsing.</abstract>
<identifier type="citekey">taslimipoor-etal-2019-gcn</identifier>
<identifier type="doi">10.18653/v1/S19-2014</identifier>
<location>
<url>https://aclanthology.org/S19-2014</url>
</location>
<part>
<date>2019-06</date>
<extent unit="page">
<start>102</start>
<end>106</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T GCN-Sem at SemEval-2019 Task 1: Semantic Parsing using Graph Convolutional and Recurrent Neural Networks
%A Taslimipoor, Shiva
%A Rohanian, Omid
%A Može, Sara
%Y May, Jonathan
%Y Shutova, Ekaterina
%Y Herbelot, Aurelie
%Y Zhu, Xiaodan
%Y Apidianaki, Marianna
%Y Mohammad, Saif M.
%S Proceedings of the 13th International Workshop on Semantic Evaluation
%D 2019
%8 June
%I Association for Computational Linguistics
%C Minneapolis, Minnesota, USA
%F taslimipoor-etal-2019-gcn
%X This paper describes the system submitted to the SemEval 2019 shared task 1 ‘Cross-lingual Semantic Parsing with UCCA’. We rely on the semantic dependency parse trees provided in the shared task which are converted from the original UCCA files and model the task as tagging. The aim is to predict the graph structure of the output along with the types of relations among the nodes. Our proposed neural architecture is composed of Graph Convolution and BiLSTM components. The layers of the system share their weights while predicting dependency links and semantic labels. The system is applied to the CONLLU format of the input data and is best suited for semantic dependency parsing.
%R 10.18653/v1/S19-2014
%U https://aclanthology.org/S19-2014
%U https://doi.org/10.18653/v1/S19-2014
%P 102-106
Markdown (Informal)
[GCN-Sem at SemEval-2019 Task 1: Semantic Parsing using Graph Convolutional and Recurrent Neural Networks](https://aclanthology.org/S19-2014) (Taslimipoor et al., SemEval 2019)
ACL