@inproceedings{gratian-2019-brainee,
    title = "{B}rain{EE} at {S}em{E}val-2019 Task 3: Ensembling Linear Classifiers for Emotion Prediction",
    author = "Gratian, Vachagan",
    editor = "May, Jonathan  and
      Shutova, Ekaterina  and
      Herbelot, Aurelie  and
      Zhu, Xiaodan  and
      Apidianaki, Marianna  and
      Mohammad, Saif M.",
    booktitle = "Proceedings of the 13th International Workshop on Semantic Evaluation",
    month = jun,
    year = "2019",
    address = "Minneapolis, Minnesota, USA",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/S19-2020/",
    doi = "10.18653/v1/S19-2020",
    pages = "137--141",
    abstract = "The paper describes an ensemble of linear perceptrons trained for emotion classification as part of the SemEval-2019 shared-task 3. The model uses a matrix of probabilities to weight the activations of the base-classifiers and makes a final prediction using the sum rule. The base-classifiers are multi-class perceptrons utilizing character and word n-grams, part-of-speech tags and sentiment polarity scores. The results of our experiments indicate that the ensemble outperforms the base-classifiers, but only marginally. In the best scenario our model attains an F-Micro score of 0.672, whereas the base-classifiers attained scores ranging from 0.636 to 0.666."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="gratian-2019-brainee">
    <titleInfo>
        <title>BrainEE at SemEval-2019 Task 3: Ensembling Linear Classifiers for Emotion Prediction</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Vachagan</namePart>
        <namePart type="family">Gratian</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2019-06</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the 13th International Workshop on Semantic Evaluation</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Jonathan</namePart>
            <namePart type="family">May</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Ekaterina</namePart>
            <namePart type="family">Shutova</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Aurelie</namePart>
            <namePart type="family">Herbelot</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Xiaodan</namePart>
            <namePart type="family">Zhu</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Marianna</namePart>
            <namePart type="family">Apidianaki</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Saif</namePart>
            <namePart type="given">M</namePart>
            <namePart type="family">Mohammad</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">Minneapolis, Minnesota, USA</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>The paper describes an ensemble of linear perceptrons trained for emotion classification as part of the SemEval-2019 shared-task 3. The model uses a matrix of probabilities to weight the activations of the base-classifiers and makes a final prediction using the sum rule. The base-classifiers are multi-class perceptrons utilizing character and word n-grams, part-of-speech tags and sentiment polarity scores. The results of our experiments indicate that the ensemble outperforms the base-classifiers, but only marginally. In the best scenario our model attains an F-Micro score of 0.672, whereas the base-classifiers attained scores ranging from 0.636 to 0.666.</abstract>
    <identifier type="citekey">gratian-2019-brainee</identifier>
    <identifier type="doi">10.18653/v1/S19-2020</identifier>
    <location>
        <url>https://aclanthology.org/S19-2020/</url>
    </location>
    <part>
        <date>2019-06</date>
        <extent unit="page">
            <start>137</start>
            <end>141</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T BrainEE at SemEval-2019 Task 3: Ensembling Linear Classifiers for Emotion Prediction
%A Gratian, Vachagan
%Y May, Jonathan
%Y Shutova, Ekaterina
%Y Herbelot, Aurelie
%Y Zhu, Xiaodan
%Y Apidianaki, Marianna
%Y Mohammad, Saif M.
%S Proceedings of the 13th International Workshop on Semantic Evaluation
%D 2019
%8 June
%I Association for Computational Linguistics
%C Minneapolis, Minnesota, USA
%F gratian-2019-brainee
%X The paper describes an ensemble of linear perceptrons trained for emotion classification as part of the SemEval-2019 shared-task 3. The model uses a matrix of probabilities to weight the activations of the base-classifiers and makes a final prediction using the sum rule. The base-classifiers are multi-class perceptrons utilizing character and word n-grams, part-of-speech tags and sentiment polarity scores. The results of our experiments indicate that the ensemble outperforms the base-classifiers, but only marginally. In the best scenario our model attains an F-Micro score of 0.672, whereas the base-classifiers attained scores ranging from 0.636 to 0.666.
%R 10.18653/v1/S19-2020
%U https://aclanthology.org/S19-2020/
%U https://doi.org/10.18653/v1/S19-2020
%P 137-141
Markdown (Informal)
[BrainEE at SemEval-2019 Task 3: Ensembling Linear Classifiers for Emotion Prediction](https://aclanthology.org/S19-2020/) (Gratian, SemEval 2019)
ACL