@inproceedings{smetanin-2019-emosense,
    title = "{E}mo{S}ense at {S}em{E}val-2019 Task 3: Bidirectional {LSTM} Network for Contextual Emotion Detection in Textual Conversations",
    author = "Smetanin, Sergey",
    editor = "May, Jonathan  and
      Shutova, Ekaterina  and
      Herbelot, Aurelie  and
      Zhu, Xiaodan  and
      Apidianaki, Marianna  and
      Mohammad, Saif M.",
    booktitle = "Proceedings of the 13th International Workshop on Semantic Evaluation",
    month = jun,
    year = "2019",
    address = "Minneapolis, Minnesota, USA",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/S19-2034/",
    doi = "10.18653/v1/S19-2034",
    pages = "210--214",
    abstract = "In this paper, we describe a deep-learning system for emotion detection in textual conversations that participated in SemEval-2019 Task 3 ``EmoContext''. We designed a specific architecture of bidirectional LSTM which allows not only to learn semantic and sentiment feature representation, but also to capture user-specific conversation features. To fine-tune word embeddings using distant supervision we additionally collected a significant amount of emotional texts. The system achieved 72.59{\%} micro-average F1 score for emotion classes on the test dataset, thereby significantly outperforming the officially-released baseline. Word embeddings and the source code were released for the research community."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="smetanin-2019-emosense">
    <titleInfo>
        <title>EmoSense at SemEval-2019 Task 3: Bidirectional LSTM Network for Contextual Emotion Detection in Textual Conversations</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Sergey</namePart>
        <namePart type="family">Smetanin</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2019-06</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the 13th International Workshop on Semantic Evaluation</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Jonathan</namePart>
            <namePart type="family">May</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Ekaterina</namePart>
            <namePart type="family">Shutova</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Aurelie</namePart>
            <namePart type="family">Herbelot</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Xiaodan</namePart>
            <namePart type="family">Zhu</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Marianna</namePart>
            <namePart type="family">Apidianaki</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Saif</namePart>
            <namePart type="given">M</namePart>
            <namePart type="family">Mohammad</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">Minneapolis, Minnesota, USA</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>In this paper, we describe a deep-learning system for emotion detection in textual conversations that participated in SemEval-2019 Task 3 “EmoContext”. We designed a specific architecture of bidirectional LSTM which allows not only to learn semantic and sentiment feature representation, but also to capture user-specific conversation features. To fine-tune word embeddings using distant supervision we additionally collected a significant amount of emotional texts. The system achieved 72.59% micro-average F1 score for emotion classes on the test dataset, thereby significantly outperforming the officially-released baseline. Word embeddings and the source code were released for the research community.</abstract>
    <identifier type="citekey">smetanin-2019-emosense</identifier>
    <identifier type="doi">10.18653/v1/S19-2034</identifier>
    <location>
        <url>https://aclanthology.org/S19-2034/</url>
    </location>
    <part>
        <date>2019-06</date>
        <extent unit="page">
            <start>210</start>
            <end>214</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T EmoSense at SemEval-2019 Task 3: Bidirectional LSTM Network for Contextual Emotion Detection in Textual Conversations
%A Smetanin, Sergey
%Y May, Jonathan
%Y Shutova, Ekaterina
%Y Herbelot, Aurelie
%Y Zhu, Xiaodan
%Y Apidianaki, Marianna
%Y Mohammad, Saif M.
%S Proceedings of the 13th International Workshop on Semantic Evaluation
%D 2019
%8 June
%I Association for Computational Linguistics
%C Minneapolis, Minnesota, USA
%F smetanin-2019-emosense
%X In this paper, we describe a deep-learning system for emotion detection in textual conversations that participated in SemEval-2019 Task 3 “EmoContext”. We designed a specific architecture of bidirectional LSTM which allows not only to learn semantic and sentiment feature representation, but also to capture user-specific conversation features. To fine-tune word embeddings using distant supervision we additionally collected a significant amount of emotional texts. The system achieved 72.59% micro-average F1 score for emotion classes on the test dataset, thereby significantly outperforming the officially-released baseline. Word embeddings and the source code were released for the research community.
%R 10.18653/v1/S19-2034
%U https://aclanthology.org/S19-2034/
%U https://doi.org/10.18653/v1/S19-2034
%P 210-214
Markdown (Informal)
[EmoSense at SemEval-2019 Task 3: Bidirectional LSTM Network for Contextual Emotion Detection in Textual Conversations](https://aclanthology.org/S19-2034/) (Smetanin, SemEval 2019)
ACL