@inproceedings{rebiai-etal-2019-scia,
    title = "{SCIA} at {S}em{E}val-2019 Task 3: Sentiment Analysis in Textual Conversations Using Deep Learning",
    author = "Rebiai, Zinedine  and
      Andersen, Simon  and
      Debrenne, Antoine  and
      Lafargue, Victor",
    editor = "May, Jonathan  and
      Shutova, Ekaterina  and
      Herbelot, Aurelie  and
      Zhu, Xiaodan  and
      Apidianaki, Marianna  and
      Mohammad, Saif M.",
    booktitle = "Proceedings of the 13th International Workshop on Semantic Evaluation",
    month = jun,
    year = "2019",
    address = "Minneapolis, Minnesota, USA",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/S19-2051/",
    doi = "10.18653/v1/S19-2051",
    pages = "297--301",
    abstract = "In this paper we present our submission for SemEval-2019 Task 3: EmoContext. The task consisted of classifying a textual dialogue into one of four emotion classes: happy, sad, angry or others. Our approach tried to improve on multiple aspects, preprocessing with an emphasis on spell-checking and ensembling with four different models: Bi-directional contextual LSTM (BC-LSTM), categorical Bi-LSTM (CAT-LSTM), binary convolutional Bi-LSTM (BIN-LSTM) and Gated Recurrent Unit (GRU). On the leader-board, we submitted two systems that obtained a micro F1 score (F1{\ensuremath{\mu}}) of 0.711 and 0.712. After the competition, we merged our two systems with ensembling, which achieved a F1{\ensuremath{\mu}} of 0.7324 on the test dataset."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="rebiai-etal-2019-scia">
    <titleInfo>
        <title>SCIA at SemEval-2019 Task 3: Sentiment Analysis in Textual Conversations Using Deep Learning</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Zinedine</namePart>
        <namePart type="family">Rebiai</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Simon</namePart>
        <namePart type="family">Andersen</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Antoine</namePart>
        <namePart type="family">Debrenne</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Victor</namePart>
        <namePart type="family">Lafargue</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2019-06</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the 13th International Workshop on Semantic Evaluation</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Jonathan</namePart>
            <namePart type="family">May</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Ekaterina</namePart>
            <namePart type="family">Shutova</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Aurelie</namePart>
            <namePart type="family">Herbelot</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Xiaodan</namePart>
            <namePart type="family">Zhu</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Marianna</namePart>
            <namePart type="family">Apidianaki</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Saif</namePart>
            <namePart type="given">M</namePart>
            <namePart type="family">Mohammad</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">Minneapolis, Minnesota, USA</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>In this paper we present our submission for SemEval-2019 Task 3: EmoContext. The task consisted of classifying a textual dialogue into one of four emotion classes: happy, sad, angry or others. Our approach tried to improve on multiple aspects, preprocessing with an emphasis on spell-checking and ensembling with four different models: Bi-directional contextual LSTM (BC-LSTM), categorical Bi-LSTM (CAT-LSTM), binary convolutional Bi-LSTM (BIN-LSTM) and Gated Recurrent Unit (GRU). On the leader-board, we submitted two systems that obtained a micro F1 score (F1\ensuremathμ) of 0.711 and 0.712. After the competition, we merged our two systems with ensembling, which achieved a F1\ensuremathμ of 0.7324 on the test dataset.</abstract>
    <identifier type="citekey">rebiai-etal-2019-scia</identifier>
    <identifier type="doi">10.18653/v1/S19-2051</identifier>
    <location>
        <url>https://aclanthology.org/S19-2051/</url>
    </location>
    <part>
        <date>2019-06</date>
        <extent unit="page">
            <start>297</start>
            <end>301</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T SCIA at SemEval-2019 Task 3: Sentiment Analysis in Textual Conversations Using Deep Learning
%A Rebiai, Zinedine
%A Andersen, Simon
%A Debrenne, Antoine
%A Lafargue, Victor
%Y May, Jonathan
%Y Shutova, Ekaterina
%Y Herbelot, Aurelie
%Y Zhu, Xiaodan
%Y Apidianaki, Marianna
%Y Mohammad, Saif M.
%S Proceedings of the 13th International Workshop on Semantic Evaluation
%D 2019
%8 June
%I Association for Computational Linguistics
%C Minneapolis, Minnesota, USA
%F rebiai-etal-2019-scia
%X In this paper we present our submission for SemEval-2019 Task 3: EmoContext. The task consisted of classifying a textual dialogue into one of four emotion classes: happy, sad, angry or others. Our approach tried to improve on multiple aspects, preprocessing with an emphasis on spell-checking and ensembling with four different models: Bi-directional contextual LSTM (BC-LSTM), categorical Bi-LSTM (CAT-LSTM), binary convolutional Bi-LSTM (BIN-LSTM) and Gated Recurrent Unit (GRU). On the leader-board, we submitted two systems that obtained a micro F1 score (F1\ensuremathμ) of 0.711 and 0.712. After the competition, we merged our two systems with ensembling, which achieved a F1\ensuremathμ of 0.7324 on the test dataset.
%R 10.18653/v1/S19-2051
%U https://aclanthology.org/S19-2051/
%U https://doi.org/10.18653/v1/S19-2051
%P 297-301
Markdown (Informal)
[SCIA at SemEval-2019 Task 3: Sentiment Analysis in Textual Conversations Using Deep Learning](https://aclanthology.org/S19-2051/) (Rebiai et al., SemEval 2019)
ACL