@inproceedings{benballa-etal-2019-saagie,
title = "Saagie at {S}emeval-2019 Task 5: From Universal Text Embeddings and Classical Features to Domain-specific Text Classification",
author = "Benballa, Miriam and
Collet, Sebastien and
Picot-Clemente, Romain",
editor = "May, Jonathan and
Shutova, Ekaterina and
Herbelot, Aurelie and
Zhu, Xiaodan and
Apidianaki, Marianna and
Mohammad, Saif M.",
booktitle = "Proceedings of the 13th International Workshop on Semantic Evaluation",
month = jun,
year = "2019",
address = "Minneapolis, Minnesota, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/S19-2083/",
doi = "10.18653/v1/S19-2083",
pages = "469--475",
abstract = "This paper describes our contribution to SemEval 2019 Task 5: Hateval. We propose to investigate how domain-specific text classification task can benefit from pretrained state of the art language models and how they can be combined with classical handcrafted features. For this purpose, we propose an approach based on a feature-level Meta-Embedding to let the model choose which features to keep and how to use them."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="benballa-etal-2019-saagie">
<titleInfo>
<title>Saagie at Semeval-2019 Task 5: From Universal Text Embeddings and Classical Features to Domain-specific Text Classification</title>
</titleInfo>
<name type="personal">
<namePart type="given">Miriam</namePart>
<namePart type="family">Benballa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sebastien</namePart>
<namePart type="family">Collet</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Romain</namePart>
<namePart type="family">Picot-Clemente</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 13th International Workshop on Semantic Evaluation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">May</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aurelie</namePart>
<namePart type="family">Herbelot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaodan</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saif</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Mohammad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Minneapolis, Minnesota, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes our contribution to SemEval 2019 Task 5: Hateval. We propose to investigate how domain-specific text classification task can benefit from pretrained state of the art language models and how they can be combined with classical handcrafted features. For this purpose, we propose an approach based on a feature-level Meta-Embedding to let the model choose which features to keep and how to use them.</abstract>
<identifier type="citekey">benballa-etal-2019-saagie</identifier>
<identifier type="doi">10.18653/v1/S19-2083</identifier>
<location>
<url>https://aclanthology.org/S19-2083/</url>
</location>
<part>
<date>2019-06</date>
<extent unit="page">
<start>469</start>
<end>475</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Saagie at Semeval-2019 Task 5: From Universal Text Embeddings and Classical Features to Domain-specific Text Classification
%A Benballa, Miriam
%A Collet, Sebastien
%A Picot-Clemente, Romain
%Y May, Jonathan
%Y Shutova, Ekaterina
%Y Herbelot, Aurelie
%Y Zhu, Xiaodan
%Y Apidianaki, Marianna
%Y Mohammad, Saif M.
%S Proceedings of the 13th International Workshop on Semantic Evaluation
%D 2019
%8 June
%I Association for Computational Linguistics
%C Minneapolis, Minnesota, USA
%F benballa-etal-2019-saagie
%X This paper describes our contribution to SemEval 2019 Task 5: Hateval. We propose to investigate how domain-specific text classification task can benefit from pretrained state of the art language models and how they can be combined with classical handcrafted features. For this purpose, we propose an approach based on a feature-level Meta-Embedding to let the model choose which features to keep and how to use them.
%R 10.18653/v1/S19-2083
%U https://aclanthology.org/S19-2083/
%U https://doi.org/10.18653/v1/S19-2083
%P 469-475
Markdown (Informal)
[Saagie at Semeval-2019 Task 5: From Universal Text Embeddings and Classical Features to Domain-specific Text Classification](https://aclanthology.org/S19-2083/) (Benballa et al., SemEval 2019)
ACL