@inproceedings{sridharan-tr-2019-amrita,
title = "Amrita School of Engineering - {CSE} at {S}em{E}val-2019 Task 6: Manipulating Attention with Temporal Convolutional Neural Network for Offense Identification and Classification",
author = "Sridharan, Murali and
TR, Swapna",
editor = "May, Jonathan and
Shutova, Ekaterina and
Herbelot, Aurelie and
Zhu, Xiaodan and
Apidianaki, Marianna and
Mohammad, Saif M.",
booktitle = "Proceedings of the 13th International Workshop on Semantic Evaluation",
month = jun,
year = "2019",
address = "Minneapolis, Minnesota, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/S19-2097/",
doi = "10.18653/v1/S19-2097",
pages = "540--546",
abstract = "With the proliferation and ubiquity of smart gadgets and smart devices, across the world, data generated by them has been growing at exponential rates; in particular social media platforms like Facebook, Twitter and Instagram have been generating voluminous data on a daily basis. According to Twitter`s usage statistics, about 500 million tweets are generated each day. While the tweets reflect the users' opinions on several events across the world, there are tweets which are offensive in nature that need to be tagged under the hateful conduct policy of Twitter. Offensive tweets have to be identified, captured and processed further, for a variety of reasons, which include i) identifying offensive tweets in order to prevent violent/abusive behavior in Twitter (or any social media for that matter), ii) creating and maintaining a history of offensive tweets for individual users (would be helpful in creating meta-data for user profile), iii) inferring the sentiment of the users on particular event/issue/topic . We have employed neural network models which manipulate attention with Temporal Convolutional Neural Network for the three shared sub-tasks i) ATT-TCN (ATTention based Temporal Convolutional Neural Network) employed for shared sub-task A that yielded a best macro-F1 score of 0.46, ii) SAE-ATT-TCN(Self Attentive Embedding-ATTention based Temporal Convolutional Neural Network) employed for shared sub-task B and sub-task C that yielded best macro-F1 score of 0.61 and 0.51 respectively. Among the two variants ATT-TCN and SAE-ATT-TCN, the latter performed better."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="sridharan-tr-2019-amrita">
<titleInfo>
<title>Amrita School of Engineering - CSE at SemEval-2019 Task 6: Manipulating Attention with Temporal Convolutional Neural Network for Offense Identification and Classification</title>
</titleInfo>
<name type="personal">
<namePart type="given">Murali</namePart>
<namePart type="family">Sridharan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Swapna</namePart>
<namePart type="family">TR</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 13th International Workshop on Semantic Evaluation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">May</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aurelie</namePart>
<namePart type="family">Herbelot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaodan</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saif</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Mohammad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Minneapolis, Minnesota, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>With the proliferation and ubiquity of smart gadgets and smart devices, across the world, data generated by them has been growing at exponential rates; in particular social media platforms like Facebook, Twitter and Instagram have been generating voluminous data on a daily basis. According to Twitter‘s usage statistics, about 500 million tweets are generated each day. While the tweets reflect the users’ opinions on several events across the world, there are tweets which are offensive in nature that need to be tagged under the hateful conduct policy of Twitter. Offensive tweets have to be identified, captured and processed further, for a variety of reasons, which include i) identifying offensive tweets in order to prevent violent/abusive behavior in Twitter (or any social media for that matter), ii) creating and maintaining a history of offensive tweets for individual users (would be helpful in creating meta-data for user profile), iii) inferring the sentiment of the users on particular event/issue/topic . We have employed neural network models which manipulate attention with Temporal Convolutional Neural Network for the three shared sub-tasks i) ATT-TCN (ATTention based Temporal Convolutional Neural Network) employed for shared sub-task A that yielded a best macro-F1 score of 0.46, ii) SAE-ATT-TCN(Self Attentive Embedding-ATTention based Temporal Convolutional Neural Network) employed for shared sub-task B and sub-task C that yielded best macro-F1 score of 0.61 and 0.51 respectively. Among the two variants ATT-TCN and SAE-ATT-TCN, the latter performed better.</abstract>
<identifier type="citekey">sridharan-tr-2019-amrita</identifier>
<identifier type="doi">10.18653/v1/S19-2097</identifier>
<location>
<url>https://aclanthology.org/S19-2097/</url>
</location>
<part>
<date>2019-06</date>
<extent unit="page">
<start>540</start>
<end>546</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Amrita School of Engineering - CSE at SemEval-2019 Task 6: Manipulating Attention with Temporal Convolutional Neural Network for Offense Identification and Classification
%A Sridharan, Murali
%A TR, Swapna
%Y May, Jonathan
%Y Shutova, Ekaterina
%Y Herbelot, Aurelie
%Y Zhu, Xiaodan
%Y Apidianaki, Marianna
%Y Mohammad, Saif M.
%S Proceedings of the 13th International Workshop on Semantic Evaluation
%D 2019
%8 June
%I Association for Computational Linguistics
%C Minneapolis, Minnesota, USA
%F sridharan-tr-2019-amrita
%X With the proliferation and ubiquity of smart gadgets and smart devices, across the world, data generated by them has been growing at exponential rates; in particular social media platforms like Facebook, Twitter and Instagram have been generating voluminous data on a daily basis. According to Twitter‘s usage statistics, about 500 million tweets are generated each day. While the tweets reflect the users’ opinions on several events across the world, there are tweets which are offensive in nature that need to be tagged under the hateful conduct policy of Twitter. Offensive tweets have to be identified, captured and processed further, for a variety of reasons, which include i) identifying offensive tweets in order to prevent violent/abusive behavior in Twitter (or any social media for that matter), ii) creating and maintaining a history of offensive tweets for individual users (would be helpful in creating meta-data for user profile), iii) inferring the sentiment of the users on particular event/issue/topic . We have employed neural network models which manipulate attention with Temporal Convolutional Neural Network for the three shared sub-tasks i) ATT-TCN (ATTention based Temporal Convolutional Neural Network) employed for shared sub-task A that yielded a best macro-F1 score of 0.46, ii) SAE-ATT-TCN(Self Attentive Embedding-ATTention based Temporal Convolutional Neural Network) employed for shared sub-task B and sub-task C that yielded best macro-F1 score of 0.61 and 0.51 respectively. Among the two variants ATT-TCN and SAE-ATT-TCN, the latter performed better.
%R 10.18653/v1/S19-2097
%U https://aclanthology.org/S19-2097/
%U https://doi.org/10.18653/v1/S19-2097
%P 540-546
Markdown (Informal)
[Amrita School of Engineering - CSE at SemEval-2019 Task 6: Manipulating Attention with Temporal Convolutional Neural Network for Offense Identification and Classification](https://aclanthology.org/S19-2097/) (Sridharan & TR, SemEval 2019)
ACL