@inproceedings{bansal-etal-2019-tubingen,
    title = {{HAD}-{T}{\"u}bingen at {S}em{E}val-2019 Task 6: Deep Learning Analysis of Offensive Language on {T}witter: Identification and Categorization},
    author = "Bansal, Himanshu  and
      Nagel, Daniel  and
      Soloveva, Anita",
    editor = "May, Jonathan  and
      Shutova, Ekaterina  and
      Herbelot, Aurelie  and
      Zhu, Xiaodan  and
      Apidianaki, Marianna  and
      Mohammad, Saif M.",
    booktitle = "Proceedings of the 13th International Workshop on Semantic Evaluation",
    month = jun,
    year = "2019",
    address = "Minneapolis, Minnesota, USA",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/S19-2111/",
    doi = "10.18653/v1/S19-2111",
    pages = "622--627",
    abstract = {This paper describes the submissions of our team, HAD-T{\"u}bingen, for the SemEval 2019 - Task 6: ``OffensEval: Identifying and Categorizing Offensive Language in Social Media''. We participated in all the three sub-tasks: Sub-task A - ``Offensive language identification'', sub-task B - ``Automatic categorization of offense types'' and sub-task C - ``Offense target identification''. As a baseline model we used a Long short-term memory recurrent neural network (LSTM) to identify and categorize offensive tweets. For all the tasks we experimented with external databases in a postprocessing step to enhance the results made by our model. The best macro-average F1 scores obtained for the sub-tasks A, B and C are 0.73, 0.52, and 0.37, respectively.}
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="bansal-etal-2019-tubingen">
    <titleInfo>
        <title>HAD-Tübingen at SemEval-2019 Task 6: Deep Learning Analysis of Offensive Language on Twitter: Identification and Categorization</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Himanshu</namePart>
        <namePart type="family">Bansal</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Daniel</namePart>
        <namePart type="family">Nagel</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Anita</namePart>
        <namePart type="family">Soloveva</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2019-06</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the 13th International Workshop on Semantic Evaluation</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Jonathan</namePart>
            <namePart type="family">May</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Ekaterina</namePart>
            <namePart type="family">Shutova</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Aurelie</namePart>
            <namePart type="family">Herbelot</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Xiaodan</namePart>
            <namePart type="family">Zhu</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Marianna</namePart>
            <namePart type="family">Apidianaki</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Saif</namePart>
            <namePart type="given">M</namePart>
            <namePart type="family">Mohammad</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">Minneapolis, Minnesota, USA</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>This paper describes the submissions of our team, HAD-Tübingen, for the SemEval 2019 - Task 6: “OffensEval: Identifying and Categorizing Offensive Language in Social Media”. We participated in all the three sub-tasks: Sub-task A - “Offensive language identification”, sub-task B - “Automatic categorization of offense types” and sub-task C - “Offense target identification”. As a baseline model we used a Long short-term memory recurrent neural network (LSTM) to identify and categorize offensive tweets. For all the tasks we experimented with external databases in a postprocessing step to enhance the results made by our model. The best macro-average F1 scores obtained for the sub-tasks A, B and C are 0.73, 0.52, and 0.37, respectively.</abstract>
    <identifier type="citekey">bansal-etal-2019-tubingen</identifier>
    <identifier type="doi">10.18653/v1/S19-2111</identifier>
    <location>
        <url>https://aclanthology.org/S19-2111/</url>
    </location>
    <part>
        <date>2019-06</date>
        <extent unit="page">
            <start>622</start>
            <end>627</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T HAD-Tübingen at SemEval-2019 Task 6: Deep Learning Analysis of Offensive Language on Twitter: Identification and Categorization
%A Bansal, Himanshu
%A Nagel, Daniel
%A Soloveva, Anita
%Y May, Jonathan
%Y Shutova, Ekaterina
%Y Herbelot, Aurelie
%Y Zhu, Xiaodan
%Y Apidianaki, Marianna
%Y Mohammad, Saif M.
%S Proceedings of the 13th International Workshop on Semantic Evaluation
%D 2019
%8 June
%I Association for Computational Linguistics
%C Minneapolis, Minnesota, USA
%F bansal-etal-2019-tubingen
%X This paper describes the submissions of our team, HAD-Tübingen, for the SemEval 2019 - Task 6: “OffensEval: Identifying and Categorizing Offensive Language in Social Media”. We participated in all the three sub-tasks: Sub-task A - “Offensive language identification”, sub-task B - “Automatic categorization of offense types” and sub-task C - “Offense target identification”. As a baseline model we used a Long short-term memory recurrent neural network (LSTM) to identify and categorize offensive tweets. For all the tasks we experimented with external databases in a postprocessing step to enhance the results made by our model. The best macro-average F1 scores obtained for the sub-tasks A, B and C are 0.73, 0.52, and 0.37, respectively.
%R 10.18653/v1/S19-2111
%U https://aclanthology.org/S19-2111/
%U https://doi.org/10.18653/v1/S19-2111
%P 622-627
Markdown (Informal)
[HAD-Tübingen at SemEval-2019 Task 6: Deep Learning Analysis of Offensive Language on Twitter: Identification and Categorization](https://aclanthology.org/S19-2111/) (Bansal et al., SemEval 2019)
ACL