@inproceedings{kiesel-etal-2019-semeval,
title = "{S}em{E}val-2019 Task 4: Hyperpartisan News Detection",
author = "Kiesel, Johannes and
Mestre, Maria and
Shukla, Rishabh and
Vincent, Emmanuel and
Adineh, Payam and
Corney, David and
Stein, Benno and
Potthast, Martin",
editor = "May, Jonathan and
Shutova, Ekaterina and
Herbelot, Aurelie and
Zhu, Xiaodan and
Apidianaki, Marianna and
Mohammad, Saif M.",
booktitle = "Proceedings of the 13th International Workshop on Semantic Evaluation",
month = jun,
year = "2019",
address = "Minneapolis, Minnesota, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/S19-2145/",
doi = "10.18653/v1/S19-2145",
pages = "829--839",
abstract = "Hyperpartisan news is news that takes an extreme left-wing or right-wing standpoint. If one is able to reliably compute this meta information, news articles may be automatically tagged, this way encouraging or discouraging readers to consume the text. It is an open question how successfully hyperpartisan news detection can be automated, and the goal of this SemEval task was to shed light on the state of the art. We developed new resources for this purpose, including a manually labeled dataset with 1,273 articles, and a second dataset with 754,000 articles, labeled via distant supervision. The interest of the research community in our task exceeded all our expectations: The datasets were downloaded about 1,000 times, 322 teams registered, of which 184 configured a virtual machine on our shared task cloud service TIRA, of which in turn 42 teams submitted a valid run. The best team achieved an accuracy of 0.822 on a balanced sample (yes : no hyperpartisan) drawn from the manually tagged corpus; an ensemble of the submitted systems increased the accuracy by 0.048."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kiesel-etal-2019-semeval">
<titleInfo>
<title>SemEval-2019 Task 4: Hyperpartisan News Detection</title>
</titleInfo>
<name type="personal">
<namePart type="given">Johannes</namePart>
<namePart type="family">Kiesel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Maria</namePart>
<namePart type="family">Mestre</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rishabh</namePart>
<namePart type="family">Shukla</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Emmanuel</namePart>
<namePart type="family">Vincent</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Payam</namePart>
<namePart type="family">Adineh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Corney</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Benno</namePart>
<namePart type="family">Stein</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Martin</namePart>
<namePart type="family">Potthast</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 13th International Workshop on Semantic Evaluation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">May</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aurelie</namePart>
<namePart type="family">Herbelot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaodan</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saif</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Mohammad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Minneapolis, Minnesota, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Hyperpartisan news is news that takes an extreme left-wing or right-wing standpoint. If one is able to reliably compute this meta information, news articles may be automatically tagged, this way encouraging or discouraging readers to consume the text. It is an open question how successfully hyperpartisan news detection can be automated, and the goal of this SemEval task was to shed light on the state of the art. We developed new resources for this purpose, including a manually labeled dataset with 1,273 articles, and a second dataset with 754,000 articles, labeled via distant supervision. The interest of the research community in our task exceeded all our expectations: The datasets were downloaded about 1,000 times, 322 teams registered, of which 184 configured a virtual machine on our shared task cloud service TIRA, of which in turn 42 teams submitted a valid run. The best team achieved an accuracy of 0.822 on a balanced sample (yes : no hyperpartisan) drawn from the manually tagged corpus; an ensemble of the submitted systems increased the accuracy by 0.048.</abstract>
<identifier type="citekey">kiesel-etal-2019-semeval</identifier>
<identifier type="doi">10.18653/v1/S19-2145</identifier>
<location>
<url>https://aclanthology.org/S19-2145/</url>
</location>
<part>
<date>2019-06</date>
<extent unit="page">
<start>829</start>
<end>839</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T SemEval-2019 Task 4: Hyperpartisan News Detection
%A Kiesel, Johannes
%A Mestre, Maria
%A Shukla, Rishabh
%A Vincent, Emmanuel
%A Adineh, Payam
%A Corney, David
%A Stein, Benno
%A Potthast, Martin
%Y May, Jonathan
%Y Shutova, Ekaterina
%Y Herbelot, Aurelie
%Y Zhu, Xiaodan
%Y Apidianaki, Marianna
%Y Mohammad, Saif M.
%S Proceedings of the 13th International Workshop on Semantic Evaluation
%D 2019
%8 June
%I Association for Computational Linguistics
%C Minneapolis, Minnesota, USA
%F kiesel-etal-2019-semeval
%X Hyperpartisan news is news that takes an extreme left-wing or right-wing standpoint. If one is able to reliably compute this meta information, news articles may be automatically tagged, this way encouraging or discouraging readers to consume the text. It is an open question how successfully hyperpartisan news detection can be automated, and the goal of this SemEval task was to shed light on the state of the art. We developed new resources for this purpose, including a manually labeled dataset with 1,273 articles, and a second dataset with 754,000 articles, labeled via distant supervision. The interest of the research community in our task exceeded all our expectations: The datasets were downloaded about 1,000 times, 322 teams registered, of which 184 configured a virtual machine on our shared task cloud service TIRA, of which in turn 42 teams submitted a valid run. The best team achieved an accuracy of 0.822 on a balanced sample (yes : no hyperpartisan) drawn from the manually tagged corpus; an ensemble of the submitted systems increased the accuracy by 0.048.
%R 10.18653/v1/S19-2145
%U https://aclanthology.org/S19-2145/
%U https://doi.org/10.18653/v1/S19-2145
%P 829-839
Markdown (Informal)
[SemEval-2019 Task 4: Hyperpartisan News Detection](https://aclanthology.org/S19-2145/) (Kiesel et al., SemEval 2019)
ACL
- Johannes Kiesel, Maria Mestre, Rishabh Shukla, Emmanuel Vincent, Payam Adineh, David Corney, Benno Stein, and Martin Potthast. 2019. SemEval-2019 Task 4: Hyperpartisan News Detection. In Proceedings of the 13th International Workshop on Semantic Evaluation, pages 829–839, Minneapolis, Minnesota, USA. Association for Computational Linguistics.