@inproceedings{papadopoulou-etal-2019-brenda,
    title = "Brenda Starr at {S}em{E}val-2019 Task 4: Hyperpartisan News Detection",
    author = "Papadopoulou, Olga  and
      Kordopatis-Zilos, Giorgos  and
      Zampoglou, Markos  and
      Papadopoulos, Symeon  and
      Kompatsiaris, Yiannis",
    editor = "May, Jonathan  and
      Shutova, Ekaterina  and
      Herbelot, Aurelie  and
      Zhu, Xiaodan  and
      Apidianaki, Marianna  and
      Mohammad, Saif M.",
    booktitle = "Proceedings of the 13th International Workshop on Semantic Evaluation",
    month = jun,
    year = "2019",
    address = "Minneapolis, Minnesota, USA",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/S19-2157/",
    doi = "10.18653/v1/S19-2157",
    pages = "924--928",
    abstract = "In the effort to tackle the challenge of Hyperpartisan News Detection, i.e., the task of deciding whether a news article is biased towards one party, faction, cause, or person, we experimented with two systems: i) a standard supervised learning approach using superficial text and bag-of-words features from the article title and body, and ii) a deep learning system comprising a four-layer convolutional neural network and max-pooling layers after the embedding layer, feeding the consolidated features to a bi-directional recurrent neural network. We achieved an F-score of 0.712 with our best approach, which corresponds to the mid-range of performance levels in the leaderboard."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="papadopoulou-etal-2019-brenda">
    <titleInfo>
        <title>Brenda Starr at SemEval-2019 Task 4: Hyperpartisan News Detection</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Olga</namePart>
        <namePart type="family">Papadopoulou</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Giorgos</namePart>
        <namePart type="family">Kordopatis-Zilos</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Markos</namePart>
        <namePart type="family">Zampoglou</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Symeon</namePart>
        <namePart type="family">Papadopoulos</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Yiannis</namePart>
        <namePart type="family">Kompatsiaris</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2019-06</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the 13th International Workshop on Semantic Evaluation</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Jonathan</namePart>
            <namePart type="family">May</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Ekaterina</namePart>
            <namePart type="family">Shutova</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Aurelie</namePart>
            <namePart type="family">Herbelot</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Xiaodan</namePart>
            <namePart type="family">Zhu</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Marianna</namePart>
            <namePart type="family">Apidianaki</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Saif</namePart>
            <namePart type="given">M</namePart>
            <namePart type="family">Mohammad</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">Minneapolis, Minnesota, USA</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>In the effort to tackle the challenge of Hyperpartisan News Detection, i.e., the task of deciding whether a news article is biased towards one party, faction, cause, or person, we experimented with two systems: i) a standard supervised learning approach using superficial text and bag-of-words features from the article title and body, and ii) a deep learning system comprising a four-layer convolutional neural network and max-pooling layers after the embedding layer, feeding the consolidated features to a bi-directional recurrent neural network. We achieved an F-score of 0.712 with our best approach, which corresponds to the mid-range of performance levels in the leaderboard.</abstract>
    <identifier type="citekey">papadopoulou-etal-2019-brenda</identifier>
    <identifier type="doi">10.18653/v1/S19-2157</identifier>
    <location>
        <url>https://aclanthology.org/S19-2157/</url>
    </location>
    <part>
        <date>2019-06</date>
        <extent unit="page">
            <start>924</start>
            <end>928</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Brenda Starr at SemEval-2019 Task 4: Hyperpartisan News Detection
%A Papadopoulou, Olga
%A Kordopatis-Zilos, Giorgos
%A Zampoglou, Markos
%A Papadopoulos, Symeon
%A Kompatsiaris, Yiannis
%Y May, Jonathan
%Y Shutova, Ekaterina
%Y Herbelot, Aurelie
%Y Zhu, Xiaodan
%Y Apidianaki, Marianna
%Y Mohammad, Saif M.
%S Proceedings of the 13th International Workshop on Semantic Evaluation
%D 2019
%8 June
%I Association for Computational Linguistics
%C Minneapolis, Minnesota, USA
%F papadopoulou-etal-2019-brenda
%X In the effort to tackle the challenge of Hyperpartisan News Detection, i.e., the task of deciding whether a news article is biased towards one party, faction, cause, or person, we experimented with two systems: i) a standard supervised learning approach using superficial text and bag-of-words features from the article title and body, and ii) a deep learning system comprising a four-layer convolutional neural network and max-pooling layers after the embedding layer, feeding the consolidated features to a bi-directional recurrent neural network. We achieved an F-score of 0.712 with our best approach, which corresponds to the mid-range of performance levels in the leaderboard.
%R 10.18653/v1/S19-2157
%U https://aclanthology.org/S19-2157/
%U https://doi.org/10.18653/v1/S19-2157
%P 924-928
Markdown (Informal)
[Brenda Starr at SemEval-2019 Task 4: Hyperpartisan News Detection](https://aclanthology.org/S19-2157/) (Papadopoulou et al., SemEval 2019)
ACL
- Olga Papadopoulou, Giorgos Kordopatis-Zilos, Markos Zampoglou, Symeon Papadopoulos, and Yiannis Kompatsiaris. 2019. Brenda Starr at SemEval-2019 Task 4: Hyperpartisan News Detection. In Proceedings of the 13th International Workshop on Semantic Evaluation, pages 924–928, Minneapolis, Minnesota, USA. Association for Computational Linguistics.