@inproceedings{isbister-johansson-2019-dick,
title = "Dick-Preston and Morbo at {S}em{E}val-2019 Task 4: Transfer Learning for Hyperpartisan News Detection",
author = "Isbister, Tim and
Johansson, Fredrik",
editor = "May, Jonathan and
Shutova, Ekaterina and
Herbelot, Aurelie and
Zhu, Xiaodan and
Apidianaki, Marianna and
Mohammad, Saif M.",
booktitle = "Proceedings of the 13th International Workshop on Semantic Evaluation",
month = jun,
year = "2019",
address = "Minneapolis, Minnesota, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/S19-2160/",
doi = "10.18653/v1/S19-2160",
pages = "939--943",
abstract = "In a world of information operations, influence campaigns, and fake news, classification of news articles as following hyperpartisan argumentation or not is becoming increasingly important. We present a deep learning-based approach in which a pre-trained language model has been fine-tuned on domain-specific data and used for classification of news articles, as part of the SemEval-2019 task on hyperpartisan news detection. The suggested approach yields accuracy and F1-scores around 0.8 which places the best performing classifier among the top-5 systems in the competition."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="isbister-johansson-2019-dick">
<titleInfo>
<title>Dick-Preston and Morbo at SemEval-2019 Task 4: Transfer Learning for Hyperpartisan News Detection</title>
</titleInfo>
<name type="personal">
<namePart type="given">Tim</namePart>
<namePart type="family">Isbister</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fredrik</namePart>
<namePart type="family">Johansson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 13th International Workshop on Semantic Evaluation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">May</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aurelie</namePart>
<namePart type="family">Herbelot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaodan</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saif</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Mohammad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Minneapolis, Minnesota, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In a world of information operations, influence campaigns, and fake news, classification of news articles as following hyperpartisan argumentation or not is becoming increasingly important. We present a deep learning-based approach in which a pre-trained language model has been fine-tuned on domain-specific data and used for classification of news articles, as part of the SemEval-2019 task on hyperpartisan news detection. The suggested approach yields accuracy and F1-scores around 0.8 which places the best performing classifier among the top-5 systems in the competition.</abstract>
<identifier type="citekey">isbister-johansson-2019-dick</identifier>
<identifier type="doi">10.18653/v1/S19-2160</identifier>
<location>
<url>https://aclanthology.org/S19-2160/</url>
</location>
<part>
<date>2019-06</date>
<extent unit="page">
<start>939</start>
<end>943</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Dick-Preston and Morbo at SemEval-2019 Task 4: Transfer Learning for Hyperpartisan News Detection
%A Isbister, Tim
%A Johansson, Fredrik
%Y May, Jonathan
%Y Shutova, Ekaterina
%Y Herbelot, Aurelie
%Y Zhu, Xiaodan
%Y Apidianaki, Marianna
%Y Mohammad, Saif M.
%S Proceedings of the 13th International Workshop on Semantic Evaluation
%D 2019
%8 June
%I Association for Computational Linguistics
%C Minneapolis, Minnesota, USA
%F isbister-johansson-2019-dick
%X In a world of information operations, influence campaigns, and fake news, classification of news articles as following hyperpartisan argumentation or not is becoming increasingly important. We present a deep learning-based approach in which a pre-trained language model has been fine-tuned on domain-specific data and used for classification of news articles, as part of the SemEval-2019 task on hyperpartisan news detection. The suggested approach yields accuracy and F1-scores around 0.8 which places the best performing classifier among the top-5 systems in the competition.
%R 10.18653/v1/S19-2160
%U https://aclanthology.org/S19-2160/
%U https://doi.org/10.18653/v1/S19-2160
%P 939-943
Markdown (Informal)
[Dick-Preston and Morbo at SemEval-2019 Task 4: Transfer Learning for Hyperpartisan News Detection](https://aclanthology.org/S19-2160/) (Isbister & Johansson, SemEval 2019)
ACL