@inproceedings{chakravartula-etal-2019-fermi,
title = "Fermi at {S}em{E}val-2019 Task 4: The sarah-jane-smith Hyperpartisan News Detector",
author = "Chakravartula, Nikhil and
Indurthi, Vijayasaradhi and
Syed, Bakhtiyar",
editor = "May, Jonathan and
Shutova, Ekaterina and
Herbelot, Aurelie and
Zhu, Xiaodan and
Apidianaki, Marianna and
Mohammad, Saif M.",
booktitle = "Proceedings of the 13th International Workshop on Semantic Evaluation",
month = jun,
year = "2019",
address = "Minneapolis, Minnesota, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/S19-2163/",
doi = "10.18653/v1/S19-2163",
pages = "954--956",
abstract = "This paper describes our system (Fermi) for Task 4: Hyper-partisan News detection of SemEval-2019. We use simple text classification algorithms by transforming the input features to a reduced feature set. We aim to find the right number of features useful for efficient classification and explore multiple training models to evaluate the performance of these text classification algorithms. Our team - Fermi`s model achieved an accuracy of 59.10{\%} and an F1 score of 69.5{\%} on the official test data set. In this paper, we provide a detailed description of the approach as well as the results obtained in the task."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="chakravartula-etal-2019-fermi">
<titleInfo>
<title>Fermi at SemEval-2019 Task 4: The sarah-jane-smith Hyperpartisan News Detector</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nikhil</namePart>
<namePart type="family">Chakravartula</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vijayasaradhi</namePart>
<namePart type="family">Indurthi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bakhtiyar</namePart>
<namePart type="family">Syed</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 13th International Workshop on Semantic Evaluation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">May</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aurelie</namePart>
<namePart type="family">Herbelot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaodan</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saif</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Mohammad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Minneapolis, Minnesota, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes our system (Fermi) for Task 4: Hyper-partisan News detection of SemEval-2019. We use simple text classification algorithms by transforming the input features to a reduced feature set. We aim to find the right number of features useful for efficient classification and explore multiple training models to evaluate the performance of these text classification algorithms. Our team - Fermi‘s model achieved an accuracy of 59.10% and an F1 score of 69.5% on the official test data set. In this paper, we provide a detailed description of the approach as well as the results obtained in the task.</abstract>
<identifier type="citekey">chakravartula-etal-2019-fermi</identifier>
<identifier type="doi">10.18653/v1/S19-2163</identifier>
<location>
<url>https://aclanthology.org/S19-2163/</url>
</location>
<part>
<date>2019-06</date>
<extent unit="page">
<start>954</start>
<end>956</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Fermi at SemEval-2019 Task 4: The sarah-jane-smith Hyperpartisan News Detector
%A Chakravartula, Nikhil
%A Indurthi, Vijayasaradhi
%A Syed, Bakhtiyar
%Y May, Jonathan
%Y Shutova, Ekaterina
%Y Herbelot, Aurelie
%Y Zhu, Xiaodan
%Y Apidianaki, Marianna
%Y Mohammad, Saif M.
%S Proceedings of the 13th International Workshop on Semantic Evaluation
%D 2019
%8 June
%I Association for Computational Linguistics
%C Minneapolis, Minnesota, USA
%F chakravartula-etal-2019-fermi
%X This paper describes our system (Fermi) for Task 4: Hyper-partisan News detection of SemEval-2019. We use simple text classification algorithms by transforming the input features to a reduced feature set. We aim to find the right number of features useful for efficient classification and explore multiple training models to evaluate the performance of these text classification algorithms. Our team - Fermi‘s model achieved an accuracy of 59.10% and an F1 score of 69.5% on the official test data set. In this paper, we provide a detailed description of the approach as well as the results obtained in the task.
%R 10.18653/v1/S19-2163
%U https://aclanthology.org/S19-2163/
%U https://doi.org/10.18653/v1/S19-2163
%P 954-956
Markdown (Informal)
[Fermi at SemEval-2019 Task 4: The sarah-jane-smith Hyperpartisan News Detector](https://aclanthology.org/S19-2163/) (Chakravartula et al., SemEval 2019)
ACL