@inproceedings{joo-hwang-2019-steve,
title = "Steve {M}artin at {S}em{E}val-2019 Task 4: Ensemble Learning Model for Detecting Hyperpartisan News",
author = "Joo, Youngjun and
Hwang, Inchon",
editor = "May, Jonathan and
Shutova, Ekaterina and
Herbelot, Aurelie and
Zhu, Xiaodan and
Apidianaki, Marianna and
Mohammad, Saif M.",
booktitle = "Proceedings of the 13th International Workshop on Semantic Evaluation",
month = jun,
year = "2019",
address = "Minneapolis, Minnesota, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/S19-2171",
doi = "10.18653/v1/S19-2171",
pages = "990--994",
abstract = "This paper describes our submission to task 4 in SemEval 2019, i.e., hyperpartisan news detection. Our model aims at detecting hyperpartisan news by incorporating the style-based features and the content-based features. We extract a broad number of feature sets and use as our learning algorithms the GBDT and the n-gram CNN model. Finally, we apply the weighted average for effective learning between the two models. Our model achieves an accuracy of 0.745 on the test set in subtask A.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="joo-hwang-2019-steve">
<titleInfo>
<title>Steve Martin at SemEval-2019 Task 4: Ensemble Learning Model for Detecting Hyperpartisan News</title>
</titleInfo>
<name type="personal">
<namePart type="given">Youngjun</namePart>
<namePart type="family">Joo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Inchon</namePart>
<namePart type="family">Hwang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 13th International Workshop on Semantic Evaluation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">May</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aurelie</namePart>
<namePart type="family">Herbelot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaodan</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saif</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Mohammad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Minneapolis, Minnesota, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes our submission to task 4 in SemEval 2019, i.e., hyperpartisan news detection. Our model aims at detecting hyperpartisan news by incorporating the style-based features and the content-based features. We extract a broad number of feature sets and use as our learning algorithms the GBDT and the n-gram CNN model. Finally, we apply the weighted average for effective learning between the two models. Our model achieves an accuracy of 0.745 on the test set in subtask A.</abstract>
<identifier type="citekey">joo-hwang-2019-steve</identifier>
<identifier type="doi">10.18653/v1/S19-2171</identifier>
<location>
<url>https://aclanthology.org/S19-2171</url>
</location>
<part>
<date>2019-06</date>
<extent unit="page">
<start>990</start>
<end>994</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Steve Martin at SemEval-2019 Task 4: Ensemble Learning Model for Detecting Hyperpartisan News
%A Joo, Youngjun
%A Hwang, Inchon
%Y May, Jonathan
%Y Shutova, Ekaterina
%Y Herbelot, Aurelie
%Y Zhu, Xiaodan
%Y Apidianaki, Marianna
%Y Mohammad, Saif M.
%S Proceedings of the 13th International Workshop on Semantic Evaluation
%D 2019
%8 June
%I Association for Computational Linguistics
%C Minneapolis, Minnesota, USA
%F joo-hwang-2019-steve
%X This paper describes our submission to task 4 in SemEval 2019, i.e., hyperpartisan news detection. Our model aims at detecting hyperpartisan news by incorporating the style-based features and the content-based features. We extract a broad number of feature sets and use as our learning algorithms the GBDT and the n-gram CNN model. Finally, we apply the weighted average for effective learning between the two models. Our model achieves an accuracy of 0.745 on the test set in subtask A.
%R 10.18653/v1/S19-2171
%U https://aclanthology.org/S19-2171
%U https://doi.org/10.18653/v1/S19-2171
%P 990-994
Markdown (Informal)
[Steve Martin at SemEval-2019 Task 4: Ensemble Learning Model for Detecting Hyperpartisan News](https://aclanthology.org/S19-2171) (Joo & Hwang, SemEval 2019)
ACL