@inproceedings{falkenjack-jonsson-2016-implicit,
title = "Implicit readability ranking using the latent variable of a {B}ayesian Probit model",
author = {Falkenjack, Johan and
J{\"o}nsson, Arne},
editor = "Brunato, Dominique and
Dell{'}Orletta, Felice and
Venturi, Giulia and
Fran{\c{c}}ois, Thomas and
Blache, Philippe",
booktitle = "Proceedings of the Workshop on Computational Linguistics for Linguistic Complexity ({CL}4{LC})",
month = dec,
year = "2016",
address = "Osaka, Japan",
publisher = "The COLING 2016 Organizing Committee",
url = "https://aclanthology.org/W16-4112/",
pages = "104--112",
abstract = "Data driven approaches to readability analysis for languages other than English has been plagued by a scarcity of suitable corpora. Often, relevant corpora consist only of easy-to-read texts with no rank information or empirical readability scores, making only binary approaches, such as classification, applicable. We propose a Bayesian, latent variable, approach to get the most out of these kinds of corpora. In this paper we present results on using such a model for readability ranking. The model is evaluated on a preliminary corpus of ranked student texts with encouraging results. We also assess the model by showing that it performs readability classification on par with a state of the art classifier while at the same being transparent enough to allow more sophisticated interpretations."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="falkenjack-jonsson-2016-implicit">
<titleInfo>
<title>Implicit readability ranking using the latent variable of a Bayesian Probit model</title>
</titleInfo>
<name type="personal">
<namePart type="given">Johan</namePart>
<namePart type="family">Falkenjack</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Arne</namePart>
<namePart type="family">Jönsson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2016-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Workshop on Computational Linguistics for Linguistic Complexity (CL4LC)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dominique</namePart>
<namePart type="family">Brunato</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Felice</namePart>
<namePart type="family">Dell’Orletta</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Giulia</namePart>
<namePart type="family">Venturi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thomas</namePart>
<namePart type="family">François</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Philippe</namePart>
<namePart type="family">Blache</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>The COLING 2016 Organizing Committee</publisher>
<place>
<placeTerm type="text">Osaka, Japan</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Data driven approaches to readability analysis for languages other than English has been plagued by a scarcity of suitable corpora. Often, relevant corpora consist only of easy-to-read texts with no rank information or empirical readability scores, making only binary approaches, such as classification, applicable. We propose a Bayesian, latent variable, approach to get the most out of these kinds of corpora. In this paper we present results on using such a model for readability ranking. The model is evaluated on a preliminary corpus of ranked student texts with encouraging results. We also assess the model by showing that it performs readability classification on par with a state of the art classifier while at the same being transparent enough to allow more sophisticated interpretations.</abstract>
<identifier type="citekey">falkenjack-jonsson-2016-implicit</identifier>
<location>
<url>https://aclanthology.org/W16-4112/</url>
</location>
<part>
<date>2016-12</date>
<extent unit="page">
<start>104</start>
<end>112</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Implicit readability ranking using the latent variable of a Bayesian Probit model
%A Falkenjack, Johan
%A Jönsson, Arne
%Y Brunato, Dominique
%Y Dell’Orletta, Felice
%Y Venturi, Giulia
%Y François, Thomas
%Y Blache, Philippe
%S Proceedings of the Workshop on Computational Linguistics for Linguistic Complexity (CL4LC)
%D 2016
%8 December
%I The COLING 2016 Organizing Committee
%C Osaka, Japan
%F falkenjack-jonsson-2016-implicit
%X Data driven approaches to readability analysis for languages other than English has been plagued by a scarcity of suitable corpora. Often, relevant corpora consist only of easy-to-read texts with no rank information or empirical readability scores, making only binary approaches, such as classification, applicable. We propose a Bayesian, latent variable, approach to get the most out of these kinds of corpora. In this paper we present results on using such a model for readability ranking. The model is evaluated on a preliminary corpus of ranked student texts with encouraging results. We also assess the model by showing that it performs readability classification on par with a state of the art classifier while at the same being transparent enough to allow more sophisticated interpretations.
%U https://aclanthology.org/W16-4112/
%P 104-112
Markdown (Informal)
[Implicit readability ranking using the latent variable of a Bayesian Probit model](https://aclanthology.org/W16-4112/) (Falkenjack & Jönsson, CL4LC 2016)
ACL