@inproceedings{singh-etal-2016-quantifying,
title = "Quantifying sentence complexity based on eye-tracking measures",
author = "Singh, Abhinav Deep and
Mehta, Poojan and
Husain, Samar and
Rajakrishnan, Rajkumar",
editor = "Brunato, Dominique and
Dell{'}Orletta, Felice and
Venturi, Giulia and
Fran{\c{c}}ois, Thomas and
Blache, Philippe",
booktitle = "Proceedings of the Workshop on Computational Linguistics for Linguistic Complexity ({CL}4{LC})",
month = dec,
year = "2016",
address = "Osaka, Japan",
publisher = "The COLING 2016 Organizing Committee",
url = "https://aclanthology.org/W16-4123",
pages = "202--212",
abstract = "Eye-tracking reading times have been attested to reflect cognitive processes underlying sentence comprehension. However, the use of reading times in NLP applications is an underexplored area of research. In this initial work we build an automatic system to assess sentence complexity using automatically predicted eye-tracking reading time measures and demonstrate the efficacy of these reading times for a well known NLP task, namely, readability assessment. We use a machine learning model and a set of features known to be significant predictors of reading times in order to learn per-word reading times from a corpus of English text having reading times of human readers. Subsequently, we use the model to predict reading times for novel text in the context of the aforementioned task. A model based only on reading times gave competitive results compared to the systems that use extensive syntactic features to compute linguistic complexity. Our work, to the best of our knowledge, is the first study to show that automatically predicted reading times can successfully model the difficulty of a text and can be deployed in practical text processing applications.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="singh-etal-2016-quantifying">
<titleInfo>
<title>Quantifying sentence complexity based on eye-tracking measures</title>
</titleInfo>
<name type="personal">
<namePart type="given">Abhinav</namePart>
<namePart type="given">Deep</namePart>
<namePart type="family">Singh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Poojan</namePart>
<namePart type="family">Mehta</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Samar</namePart>
<namePart type="family">Husain</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rajkumar</namePart>
<namePart type="family">Rajakrishnan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2016-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Workshop on Computational Linguistics for Linguistic Complexity (CL4LC)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dominique</namePart>
<namePart type="family">Brunato</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Felice</namePart>
<namePart type="family">Dell’Orletta</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Giulia</namePart>
<namePart type="family">Venturi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thomas</namePart>
<namePart type="family">François</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Philippe</namePart>
<namePart type="family">Blache</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>The COLING 2016 Organizing Committee</publisher>
<place>
<placeTerm type="text">Osaka, Japan</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Eye-tracking reading times have been attested to reflect cognitive processes underlying sentence comprehension. However, the use of reading times in NLP applications is an underexplored area of research. In this initial work we build an automatic system to assess sentence complexity using automatically predicted eye-tracking reading time measures and demonstrate the efficacy of these reading times for a well known NLP task, namely, readability assessment. We use a machine learning model and a set of features known to be significant predictors of reading times in order to learn per-word reading times from a corpus of English text having reading times of human readers. Subsequently, we use the model to predict reading times for novel text in the context of the aforementioned task. A model based only on reading times gave competitive results compared to the systems that use extensive syntactic features to compute linguistic complexity. Our work, to the best of our knowledge, is the first study to show that automatically predicted reading times can successfully model the difficulty of a text and can be deployed in practical text processing applications.</abstract>
<identifier type="citekey">singh-etal-2016-quantifying</identifier>
<location>
<url>https://aclanthology.org/W16-4123</url>
</location>
<part>
<date>2016-12</date>
<extent unit="page">
<start>202</start>
<end>212</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Quantifying sentence complexity based on eye-tracking measures
%A Singh, Abhinav Deep
%A Mehta, Poojan
%A Husain, Samar
%A Rajakrishnan, Rajkumar
%Y Brunato, Dominique
%Y Dell’Orletta, Felice
%Y Venturi, Giulia
%Y François, Thomas
%Y Blache, Philippe
%S Proceedings of the Workshop on Computational Linguistics for Linguistic Complexity (CL4LC)
%D 2016
%8 December
%I The COLING 2016 Organizing Committee
%C Osaka, Japan
%F singh-etal-2016-quantifying
%X Eye-tracking reading times have been attested to reflect cognitive processes underlying sentence comprehension. However, the use of reading times in NLP applications is an underexplored area of research. In this initial work we build an automatic system to assess sentence complexity using automatically predicted eye-tracking reading time measures and demonstrate the efficacy of these reading times for a well known NLP task, namely, readability assessment. We use a machine learning model and a set of features known to be significant predictors of reading times in order to learn per-word reading times from a corpus of English text having reading times of human readers. Subsequently, we use the model to predict reading times for novel text in the context of the aforementioned task. A model based only on reading times gave competitive results compared to the systems that use extensive syntactic features to compute linguistic complexity. Our work, to the best of our knowledge, is the first study to show that automatically predicted reading times can successfully model the difficulty of a text and can be deployed in practical text processing applications.
%U https://aclanthology.org/W16-4123
%P 202-212
Markdown (Informal)
[Quantifying sentence complexity based on eye-tracking measures](https://aclanthology.org/W16-4123) (Singh et al., CL4LC 2016)
ACL