@inproceedings{almgren-etal-2016-named,
    title = "Named Entity Recognition in {S}wedish Health Records with Character-Based Deep Bidirectional {LSTM}s",
    author = "Almgren, Simon  and
      Pavlov, Sean  and
      Mogren, Olof",
    editor = "Ananiadou, Sophia  and
      Batista-Navarro, Riza  and
      Cohen, Kevin Bretonnel  and
      Demner-Fushman, Dina  and
      Thompson, Paul",
    booktitle = "Proceedings of the Fifth Workshop on Building and Evaluating Resources for Biomedical Text Mining ({B}io{T}xt{M}2016)",
    month = dec,
    year = "2016",
    address = "Osaka, Japan",
    publisher = "The COLING 2016 Organizing Committee",
    url = "https://aclanthology.org/W16-5104/",
    pages = "30--39",
    abstract = "We propose an approach for named entity recognition in medical data, using a character-based deep bidirectional recurrent neural network. Such models can learn features and patterns based on the character sequence, and are not limited to a fixed vocabulary. This makes them very well suited for the NER task in the medical domain. Our experimental evaluation shows promising results, with a 60{\%} improvement in F 1 score over the baseline, and our system generalizes well between different datasets."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="almgren-etal-2016-named">
    <titleInfo>
        <title>Named Entity Recognition in Swedish Health Records with Character-Based Deep Bidirectional LSTMs</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Simon</namePart>
        <namePart type="family">Almgren</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Sean</namePart>
        <namePart type="family">Pavlov</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Olof</namePart>
        <namePart type="family">Mogren</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2016-12</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the Fifth Workshop on Building and Evaluating Resources for Biomedical Text Mining (BioTxtM2016)</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Sophia</namePart>
            <namePart type="family">Ananiadou</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Riza</namePart>
            <namePart type="family">Batista-Navarro</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Kevin</namePart>
            <namePart type="given">Bretonnel</namePart>
            <namePart type="family">Cohen</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Dina</namePart>
            <namePart type="family">Demner-Fushman</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Paul</namePart>
            <namePart type="family">Thompson</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>The COLING 2016 Organizing Committee</publisher>
            <place>
                <placeTerm type="text">Osaka, Japan</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>We propose an approach for named entity recognition in medical data, using a character-based deep bidirectional recurrent neural network. Such models can learn features and patterns based on the character sequence, and are not limited to a fixed vocabulary. This makes them very well suited for the NER task in the medical domain. Our experimental evaluation shows promising results, with a 60% improvement in F 1 score over the baseline, and our system generalizes well between different datasets.</abstract>
    <identifier type="citekey">almgren-etal-2016-named</identifier>
    <location>
        <url>https://aclanthology.org/W16-5104/</url>
    </location>
    <part>
        <date>2016-12</date>
        <extent unit="page">
            <start>30</start>
            <end>39</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Named Entity Recognition in Swedish Health Records with Character-Based Deep Bidirectional LSTMs
%A Almgren, Simon
%A Pavlov, Sean
%A Mogren, Olof
%Y Ananiadou, Sophia
%Y Batista-Navarro, Riza
%Y Cohen, Kevin Bretonnel
%Y Demner-Fushman, Dina
%Y Thompson, Paul
%S Proceedings of the Fifth Workshop on Building and Evaluating Resources for Biomedical Text Mining (BioTxtM2016)
%D 2016
%8 December
%I The COLING 2016 Organizing Committee
%C Osaka, Japan
%F almgren-etal-2016-named
%X We propose an approach for named entity recognition in medical data, using a character-based deep bidirectional recurrent neural network. Such models can learn features and patterns based on the character sequence, and are not limited to a fixed vocabulary. This makes them very well suited for the NER task in the medical domain. Our experimental evaluation shows promising results, with a 60% improvement in F 1 score over the baseline, and our system generalizes well between different datasets.
%U https://aclanthology.org/W16-5104/
%P 30-39
Markdown (Informal)
[Named Entity Recognition in Swedish Health Records with Character-Based Deep Bidirectional LSTMs](https://aclanthology.org/W16-5104/) (Almgren et al., 2016)
ACL