@inproceedings{almgren-etal-2016-named,
title = "Named Entity Recognition in {S}wedish Health Records with Character-Based Deep Bidirectional {LSTM}s",
author = "Almgren, Simon and
Pavlov, Sean and
Mogren, Olof",
editor = "Ananiadou, Sophia and
Batista-Navarro, Riza and
Cohen, Kevin Bretonnel and
Demner-Fushman, Dina and
Thompson, Paul",
booktitle = "Proceedings of the Fifth Workshop on Building and Evaluating Resources for Biomedical Text Mining ({B}io{T}xt{M}2016)",
month = dec,
year = "2016",
address = "Osaka, Japan",
publisher = "The COLING 2016 Organizing Committee",
url = "https://aclanthology.org/W16-5104/",
pages = "30--39",
abstract = "We propose an approach for named entity recognition in medical data, using a character-based deep bidirectional recurrent neural network. Such models can learn features and patterns based on the character sequence, and are not limited to a fixed vocabulary. This makes them very well suited for the NER task in the medical domain. Our experimental evaluation shows promising results, with a 60{\%} improvement in F 1 score over the baseline, and our system generalizes well between different datasets."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="almgren-etal-2016-named">
<titleInfo>
<title>Named Entity Recognition in Swedish Health Records with Character-Based Deep Bidirectional LSTMs</title>
</titleInfo>
<name type="personal">
<namePart type="given">Simon</namePart>
<namePart type="family">Almgren</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sean</namePart>
<namePart type="family">Pavlov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Olof</namePart>
<namePart type="family">Mogren</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2016-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Fifth Workshop on Building and Evaluating Resources for Biomedical Text Mining (BioTxtM2016)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sophia</namePart>
<namePart type="family">Ananiadou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Riza</namePart>
<namePart type="family">Batista-Navarro</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kevin</namePart>
<namePart type="given">Bretonnel</namePart>
<namePart type="family">Cohen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dina</namePart>
<namePart type="family">Demner-Fushman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Paul</namePart>
<namePart type="family">Thompson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>The COLING 2016 Organizing Committee</publisher>
<place>
<placeTerm type="text">Osaka, Japan</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We propose an approach for named entity recognition in medical data, using a character-based deep bidirectional recurrent neural network. Such models can learn features and patterns based on the character sequence, and are not limited to a fixed vocabulary. This makes them very well suited for the NER task in the medical domain. Our experimental evaluation shows promising results, with a 60% improvement in F 1 score over the baseline, and our system generalizes well between different datasets.</abstract>
<identifier type="citekey">almgren-etal-2016-named</identifier>
<location>
<url>https://aclanthology.org/W16-5104/</url>
</location>
<part>
<date>2016-12</date>
<extent unit="page">
<start>30</start>
<end>39</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Named Entity Recognition in Swedish Health Records with Character-Based Deep Bidirectional LSTMs
%A Almgren, Simon
%A Pavlov, Sean
%A Mogren, Olof
%Y Ananiadou, Sophia
%Y Batista-Navarro, Riza
%Y Cohen, Kevin Bretonnel
%Y Demner-Fushman, Dina
%Y Thompson, Paul
%S Proceedings of the Fifth Workshop on Building and Evaluating Resources for Biomedical Text Mining (BioTxtM2016)
%D 2016
%8 December
%I The COLING 2016 Organizing Committee
%C Osaka, Japan
%F almgren-etal-2016-named
%X We propose an approach for named entity recognition in medical data, using a character-based deep bidirectional recurrent neural network. Such models can learn features and patterns based on the character sequence, and are not limited to a fixed vocabulary. This makes them very well suited for the NER task in the medical domain. Our experimental evaluation shows promising results, with a 60% improvement in F 1 score over the baseline, and our system generalizes well between different datasets.
%U https://aclanthology.org/W16-5104/
%P 30-39
Markdown (Informal)
[Named Entity Recognition in Swedish Health Records with Character-Based Deep Bidirectional LSTMs](https://aclanthology.org/W16-5104/) (Almgren et al., 2016)
ACL