@inproceedings{karimi-etal-2017-automatic,
title = "Automatic Diagnosis Coding of Radiology Reports: A Comparison of Deep Learning and Conventional Classification Methods",
author = "Karimi, Sarvnaz and
Dai, Xiang and
Hassanzadeh, Hamed and
Nguyen, Anthony",
editor = "Cohen, Kevin Bretonnel and
Demner-Fushman, Dina and
Ananiadou, Sophia and
Tsujii, Junichi",
booktitle = "{B}io{NLP} 2017",
month = aug,
year = "2017",
address = "Vancouver, Canada,",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W17-2342/",
doi = "10.18653/v1/W17-2342",
pages = "328--332",
abstract = "Diagnosis autocoding services and research intend to both improve the productivity of clinical coders and the accuracy of the coding. It is an important step in data analysis for funding and reimbursement, as well as health services planning and resource allocation. We investigate the applicability of deep learning at autocoding of radiology reports using International Classification of Diseases (ICD). Deep learning methods are known to require large training data. Our goal is to explore how to use these methods when the training data is sparse, skewed and relatively small, and how their effectiveness compares to conventional methods. We identify optimal parameters that could be used in setting up a convolutional neural network for autocoding with comparable results to that of conventional methods."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="karimi-etal-2017-automatic">
<titleInfo>
<title>Automatic Diagnosis Coding of Radiology Reports: A Comparison of Deep Learning and Conventional Classification Methods</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sarvnaz</namePart>
<namePart type="family">Karimi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiang</namePart>
<namePart type="family">Dai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hamed</namePart>
<namePart type="family">Hassanzadeh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anthony</namePart>
<namePart type="family">Nguyen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>BioNLP 2017</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kevin</namePart>
<namePart type="given">Bretonnel</namePart>
<namePart type="family">Cohen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dina</namePart>
<namePart type="family">Demner-Fushman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sophia</namePart>
<namePart type="family">Ananiadou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Junichi</namePart>
<namePart type="family">Tsujii</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vancouver, Canada,</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Diagnosis autocoding services and research intend to both improve the productivity of clinical coders and the accuracy of the coding. It is an important step in data analysis for funding and reimbursement, as well as health services planning and resource allocation. We investigate the applicability of deep learning at autocoding of radiology reports using International Classification of Diseases (ICD). Deep learning methods are known to require large training data. Our goal is to explore how to use these methods when the training data is sparse, skewed and relatively small, and how their effectiveness compares to conventional methods. We identify optimal parameters that could be used in setting up a convolutional neural network for autocoding with comparable results to that of conventional methods.</abstract>
<identifier type="citekey">karimi-etal-2017-automatic</identifier>
<identifier type="doi">10.18653/v1/W17-2342</identifier>
<location>
<url>https://aclanthology.org/W17-2342/</url>
</location>
<part>
<date>2017-08</date>
<extent unit="page">
<start>328</start>
<end>332</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Automatic Diagnosis Coding of Radiology Reports: A Comparison of Deep Learning and Conventional Classification Methods
%A Karimi, Sarvnaz
%A Dai, Xiang
%A Hassanzadeh, Hamed
%A Nguyen, Anthony
%Y Cohen, Kevin Bretonnel
%Y Demner-Fushman, Dina
%Y Ananiadou, Sophia
%Y Tsujii, Junichi
%S BioNLP 2017
%D 2017
%8 August
%I Association for Computational Linguistics
%C Vancouver, Canada,
%F karimi-etal-2017-automatic
%X Diagnosis autocoding services and research intend to both improve the productivity of clinical coders and the accuracy of the coding. It is an important step in data analysis for funding and reimbursement, as well as health services planning and resource allocation. We investigate the applicability of deep learning at autocoding of radiology reports using International Classification of Diseases (ICD). Deep learning methods are known to require large training data. Our goal is to explore how to use these methods when the training data is sparse, skewed and relatively small, and how their effectiveness compares to conventional methods. We identify optimal parameters that could be used in setting up a convolutional neural network for autocoding with comparable results to that of conventional methods.
%R 10.18653/v1/W17-2342
%U https://aclanthology.org/W17-2342/
%U https://doi.org/10.18653/v1/W17-2342
%P 328-332
Markdown (Informal)
[Automatic Diagnosis Coding of Radiology Reports: A Comparison of Deep Learning and Conventional Classification Methods](https://aclanthology.org/W17-2342/) (Karimi et al., BioNLP 2017)
ACL