@inproceedings{pavlopoulos-etal-2017-improved,
title = "Improved Abusive Comment Moderation with User Embeddings",
author = "Pavlopoulos, John and
Malakasiotis, Prodromos and
Bakagianni, Juli and
Androutsopoulos, Ion",
editor = "Popescu, Octavian and
Strapparava, Carlo",
booktitle = "Proceedings of the 2017 {EMNLP} Workshop: Natural Language Processing meets Journalism",
month = sep,
year = "2017",
address = "Copenhagen, Denmark",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W17-4209/",
doi = "10.18653/v1/W17-4209",
pages = "51--55",
abstract = "Experimenting with a dataset of approximately 1.6M user comments from a Greek news sports portal, we explore how a state of the art RNN-based moderation method can be improved by adding user embeddings, user type embeddings, user biases, or user type biases. We observe improvements in all cases, with user embeddings leading to the biggest performance gains."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="pavlopoulos-etal-2017-improved">
<titleInfo>
<title>Improved Abusive Comment Moderation with User Embeddings</title>
</titleInfo>
<name type="personal">
<namePart type="given">John</namePart>
<namePart type="family">Pavlopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Prodromos</namePart>
<namePart type="family">Malakasiotis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Juli</namePart>
<namePart type="family">Bakagianni</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ion</namePart>
<namePart type="family">Androutsopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2017 EMNLP Workshop: Natural Language Processing meets Journalism</title>
</titleInfo>
<name type="personal">
<namePart type="given">Octavian</namePart>
<namePart type="family">Popescu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carlo</namePart>
<namePart type="family">Strapparava</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Copenhagen, Denmark</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Experimenting with a dataset of approximately 1.6M user comments from a Greek news sports portal, we explore how a state of the art RNN-based moderation method can be improved by adding user embeddings, user type embeddings, user biases, or user type biases. We observe improvements in all cases, with user embeddings leading to the biggest performance gains.</abstract>
<identifier type="citekey">pavlopoulos-etal-2017-improved</identifier>
<identifier type="doi">10.18653/v1/W17-4209</identifier>
<location>
<url>https://aclanthology.org/W17-4209/</url>
</location>
<part>
<date>2017-09</date>
<extent unit="page">
<start>51</start>
<end>55</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Improved Abusive Comment Moderation with User Embeddings
%A Pavlopoulos, John
%A Malakasiotis, Prodromos
%A Bakagianni, Juli
%A Androutsopoulos, Ion
%Y Popescu, Octavian
%Y Strapparava, Carlo
%S Proceedings of the 2017 EMNLP Workshop: Natural Language Processing meets Journalism
%D 2017
%8 September
%I Association for Computational Linguistics
%C Copenhagen, Denmark
%F pavlopoulos-etal-2017-improved
%X Experimenting with a dataset of approximately 1.6M user comments from a Greek news sports portal, we explore how a state of the art RNN-based moderation method can be improved by adding user embeddings, user type embeddings, user biases, or user type biases. We observe improvements in all cases, with user embeddings leading to the biggest performance gains.
%R 10.18653/v1/W17-4209
%U https://aclanthology.org/W17-4209/
%U https://doi.org/10.18653/v1/W17-4209
%P 51-55
Markdown (Informal)
[Improved Abusive Comment Moderation with User Embeddings](https://aclanthology.org/W17-4209/) (Pavlopoulos et al., 2017)
ACL
- John Pavlopoulos, Prodromos Malakasiotis, Juli Bakagianni, and Ion Androutsopoulos. 2017. Improved Abusive Comment Moderation with User Embeddings. In Proceedings of the 2017 EMNLP Workshop: Natural Language Processing meets Journalism, pages 51–55, Copenhagen, Denmark. Association for Computational Linguistics.