@inproceedings{koper-etal-2017-ims,
title = "{IMS} at {E}mo{I}nt-2017: Emotion Intensity Prediction with Affective Norms, Automatically Extended Resources and Deep Learning",
author = {K{\"o}per, Maximilian and
Kim, Evgeny and
Klinger, Roman},
editor = "Balahur, Alexandra and
Mohammad, Saif M. and
van der Goot, Erik",
booktitle = "Proceedings of the 8th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis",
month = sep,
year = "2017",
address = "Copenhagen, Denmark",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W17-5206/",
doi = "10.18653/v1/W17-5206",
pages = "50--57",
abstract = "Our submission to the WASSA-2017 shared task on the prediction of emotion intensity in tweets is a supervised learning method with extended lexicons of affective norms. We combine three main information sources in a random forrest regressor, namely (1), manually created resources, (2) automatically extended lexicons, and (3) the output of a neural network (CNN-LSTM) for sentence regression. All three feature sets perform similarly well in isolation ({\ensuremath{\approx}} .67 macro average Pearson correlation). The combination achieves .72 on the official test set (ranked 2nd out of 22 participants). Our analysis reveals that performance is increased by providing cross-emotional intensity predictions. The automatic extension of lexicon features benefit from domain specific embeddings. Complementary ratings for affective norms increase the impact of lexicon features. Our resources (ratings for 1.6 million twitter specific words) and our implementation is publicly available at \url{http://www.ims.uni-stuttgart.de/data/ims_emoint}."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="koper-etal-2017-ims">
<titleInfo>
<title>IMS at EmoInt-2017: Emotion Intensity Prediction with Affective Norms, Automatically Extended Resources and Deep Learning</title>
</titleInfo>
<name type="personal">
<namePart type="given">Maximilian</namePart>
<namePart type="family">Köper</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Evgeny</namePart>
<namePart type="family">Kim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Roman</namePart>
<namePart type="family">Klinger</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 8th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis</title>
</titleInfo>
<name type="personal">
<namePart type="given">Alexandra</namePart>
<namePart type="family">Balahur</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saif</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Mohammad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Erik</namePart>
<namePart type="family">van der Goot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Copenhagen, Denmark</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Our submission to the WASSA-2017 shared task on the prediction of emotion intensity in tweets is a supervised learning method with extended lexicons of affective norms. We combine three main information sources in a random forrest regressor, namely (1), manually created resources, (2) automatically extended lexicons, and (3) the output of a neural network (CNN-LSTM) for sentence regression. All three feature sets perform similarly well in isolation (\ensuremath\approx .67 macro average Pearson correlation). The combination achieves .72 on the official test set (ranked 2nd out of 22 participants). Our analysis reveals that performance is increased by providing cross-emotional intensity predictions. The automatic extension of lexicon features benefit from domain specific embeddings. Complementary ratings for affective norms increase the impact of lexicon features. Our resources (ratings for 1.6 million twitter specific words) and our implementation is publicly available at http://www.ims.uni-stuttgart.de/data/ims_emoint.</abstract>
<identifier type="citekey">koper-etal-2017-ims</identifier>
<identifier type="doi">10.18653/v1/W17-5206</identifier>
<location>
<url>https://aclanthology.org/W17-5206/</url>
</location>
<part>
<date>2017-09</date>
<extent unit="page">
<start>50</start>
<end>57</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T IMS at EmoInt-2017: Emotion Intensity Prediction with Affective Norms, Automatically Extended Resources and Deep Learning
%A Köper, Maximilian
%A Kim, Evgeny
%A Klinger, Roman
%Y Balahur, Alexandra
%Y Mohammad, Saif M.
%Y van der Goot, Erik
%S Proceedings of the 8th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis
%D 2017
%8 September
%I Association for Computational Linguistics
%C Copenhagen, Denmark
%F koper-etal-2017-ims
%X Our submission to the WASSA-2017 shared task on the prediction of emotion intensity in tweets is a supervised learning method with extended lexicons of affective norms. We combine three main information sources in a random forrest regressor, namely (1), manually created resources, (2) automatically extended lexicons, and (3) the output of a neural network (CNN-LSTM) for sentence regression. All three feature sets perform similarly well in isolation (\ensuremath\approx .67 macro average Pearson correlation). The combination achieves .72 on the official test set (ranked 2nd out of 22 participants). Our analysis reveals that performance is increased by providing cross-emotional intensity predictions. The automatic extension of lexicon features benefit from domain specific embeddings. Complementary ratings for affective norms increase the impact of lexicon features. Our resources (ratings for 1.6 million twitter specific words) and our implementation is publicly available at http://www.ims.uni-stuttgart.de/data/ims_emoint.
%R 10.18653/v1/W17-5206
%U https://aclanthology.org/W17-5206/
%U https://doi.org/10.18653/v1/W17-5206
%P 50-57
Markdown (Informal)
[IMS at EmoInt-2017: Emotion Intensity Prediction with Affective Norms, Automatically Extended Resources and Deep Learning](https://aclanthology.org/W17-5206/) (Köper et al., WASSA 2017)
ACL