@inproceedings{nejat-etal-2017-exploring,
title = "Exploring Joint Neural Model for Sentence Level Discourse Parsing and Sentiment Analysis",
author = "Nejat, Bita and
Carenini, Giuseppe and
Ng, Raymond",
editor = "Jokinen, Kristiina and
Stede, Manfred and
DeVault, David and
Louis, Annie",
booktitle = "Proceedings of the 18th Annual {SIG}dial Meeting on Discourse and Dialogue",
month = aug,
year = "2017",
address = {Saarbr{\"u}cken, Germany},
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W17-5535",
doi = "10.18653/v1/W17-5535",
pages = "289--298",
abstract = "Discourse Parsing and Sentiment Analysis are two fundamental tasks in Natural Language Processing that have been shown to be mutually beneficial. In this work, we design and compare two Neural Based models for jointly learning both tasks. In the proposed approach, we first create a vector representation for all the text segments in the input sentence. Next, we apply three different Recursive Neural Net models: one for discourse structure prediction, one for discourse relation prediction and one for sentiment analysis. Finally, we combine these Neural Nets in two different joint models: Multi-tasking and Pre-training. Our results on two standard corpora indicate that both methods result in improvements in each task but Multi-tasking has a bigger impact than Pre-training. Specifically for Discourse Parsing, we see improvements in the prediction of the set of contrastive relations.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="nejat-etal-2017-exploring">
<titleInfo>
<title>Exploring Joint Neural Model for Sentence Level Discourse Parsing and Sentiment Analysis</title>
</titleInfo>
<name type="personal">
<namePart type="given">Bita</namePart>
<namePart type="family">Nejat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Giuseppe</namePart>
<namePart type="family">Carenini</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Raymond</namePart>
<namePart type="family">Ng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 18th Annual SIGdial Meeting on Discourse and Dialogue</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kristiina</namePart>
<namePart type="family">Jokinen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Manfred</namePart>
<namePart type="family">Stede</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">DeVault</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Annie</namePart>
<namePart type="family">Louis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Saarbrücken, Germany</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Discourse Parsing and Sentiment Analysis are two fundamental tasks in Natural Language Processing that have been shown to be mutually beneficial. In this work, we design and compare two Neural Based models for jointly learning both tasks. In the proposed approach, we first create a vector representation for all the text segments in the input sentence. Next, we apply three different Recursive Neural Net models: one for discourse structure prediction, one for discourse relation prediction and one for sentiment analysis. Finally, we combine these Neural Nets in two different joint models: Multi-tasking and Pre-training. Our results on two standard corpora indicate that both methods result in improvements in each task but Multi-tasking has a bigger impact than Pre-training. Specifically for Discourse Parsing, we see improvements in the prediction of the set of contrastive relations.</abstract>
<identifier type="citekey">nejat-etal-2017-exploring</identifier>
<identifier type="doi">10.18653/v1/W17-5535</identifier>
<location>
<url>https://aclanthology.org/W17-5535</url>
</location>
<part>
<date>2017-08</date>
<extent unit="page">
<start>289</start>
<end>298</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Exploring Joint Neural Model for Sentence Level Discourse Parsing and Sentiment Analysis
%A Nejat, Bita
%A Carenini, Giuseppe
%A Ng, Raymond
%Y Jokinen, Kristiina
%Y Stede, Manfred
%Y DeVault, David
%Y Louis, Annie
%S Proceedings of the 18th Annual SIGdial Meeting on Discourse and Dialogue
%D 2017
%8 August
%I Association for Computational Linguistics
%C Saarbrücken, Germany
%F nejat-etal-2017-exploring
%X Discourse Parsing and Sentiment Analysis are two fundamental tasks in Natural Language Processing that have been shown to be mutually beneficial. In this work, we design and compare two Neural Based models for jointly learning both tasks. In the proposed approach, we first create a vector representation for all the text segments in the input sentence. Next, we apply three different Recursive Neural Net models: one for discourse structure prediction, one for discourse relation prediction and one for sentiment analysis. Finally, we combine these Neural Nets in two different joint models: Multi-tasking and Pre-training. Our results on two standard corpora indicate that both methods result in improvements in each task but Multi-tasking has a bigger impact than Pre-training. Specifically for Discourse Parsing, we see improvements in the prediction of the set of contrastive relations.
%R 10.18653/v1/W17-5535
%U https://aclanthology.org/W17-5535
%U https://doi.org/10.18653/v1/W17-5535
%P 289-298
Markdown (Informal)
[Exploring Joint Neural Model for Sentence Level Discourse Parsing and Sentiment Analysis](https://aclanthology.org/W17-5535) (Nejat et al., SIGDIAL 2017)
ACL