@inproceedings{bizzoni-lappin-2018-predicting,
title = "Predicting Human Metaphor Paraphrase Judgments with Deep Neural Networks",
author = "Bizzoni, Yuri and
Lappin, Shalom",
editor = "Beigman Klebanov, Beata and
Shutova, Ekaterina and
Lichtenstein, Patricia and
Muresan, Smaranda and
Wee, Chee",
booktitle = "Proceedings of the Workshop on Figurative Language Processing",
month = jun,
year = "2018",
address = "New Orleans, Louisiana",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W18-0906",
doi = "10.18653/v1/W18-0906",
pages = "45--55",
abstract = "We propose a new annotated corpus for metaphor interpretation by paraphrase, and a novel DNN model for performing this task. Our corpus consists of 200 sets of 5 sentences, with each set containing one reference metaphorical sentence, and four ranked candidate paraphrases. Our model is trained for a binary classification of paraphrase candidates, and then used to predict graded paraphrase acceptability. It reaches an encouraging 75{\%} accuracy on the binary classification task, and high Pearson (.75) and Spearman (.68) correlations on the gradient judgment prediction task.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="bizzoni-lappin-2018-predicting">
<titleInfo>
<title>Predicting Human Metaphor Paraphrase Judgments with Deep Neural Networks</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yuri</namePart>
<namePart type="family">Bizzoni</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shalom</namePart>
<namePart type="family">Lappin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Workshop on Figurative Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Beata</namePart>
<namePart type="family">Beigman Klebanov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Patricia</namePart>
<namePart type="family">Lichtenstein</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Smaranda</namePart>
<namePart type="family">Muresan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chee</namePart>
<namePart type="family">Wee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">New Orleans, Louisiana</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We propose a new annotated corpus for metaphor interpretation by paraphrase, and a novel DNN model for performing this task. Our corpus consists of 200 sets of 5 sentences, with each set containing one reference metaphorical sentence, and four ranked candidate paraphrases. Our model is trained for a binary classification of paraphrase candidates, and then used to predict graded paraphrase acceptability. It reaches an encouraging 75% accuracy on the binary classification task, and high Pearson (.75) and Spearman (.68) correlations on the gradient judgment prediction task.</abstract>
<identifier type="citekey">bizzoni-lappin-2018-predicting</identifier>
<identifier type="doi">10.18653/v1/W18-0906</identifier>
<location>
<url>https://aclanthology.org/W18-0906</url>
</location>
<part>
<date>2018-06</date>
<extent unit="page">
<start>45</start>
<end>55</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Predicting Human Metaphor Paraphrase Judgments with Deep Neural Networks
%A Bizzoni, Yuri
%A Lappin, Shalom
%Y Beigman Klebanov, Beata
%Y Shutova, Ekaterina
%Y Lichtenstein, Patricia
%Y Muresan, Smaranda
%Y Wee, Chee
%S Proceedings of the Workshop on Figurative Language Processing
%D 2018
%8 June
%I Association for Computational Linguistics
%C New Orleans, Louisiana
%F bizzoni-lappin-2018-predicting
%X We propose a new annotated corpus for metaphor interpretation by paraphrase, and a novel DNN model for performing this task. Our corpus consists of 200 sets of 5 sentences, with each set containing one reference metaphorical sentence, and four ranked candidate paraphrases. Our model is trained for a binary classification of paraphrase candidates, and then used to predict graded paraphrase acceptability. It reaches an encouraging 75% accuracy on the binary classification task, and high Pearson (.75) and Spearman (.68) correlations on the gradient judgment prediction task.
%R 10.18653/v1/W18-0906
%U https://aclanthology.org/W18-0906
%U https://doi.org/10.18653/v1/W18-0906
%P 45-55
Markdown (Informal)
[Predicting Human Metaphor Paraphrase Judgments with Deep Neural Networks](https://aclanthology.org/W18-0906) (Bizzoni & Lappin, Fig-Lang 2018)
ACL