@inproceedings{rosen-2018-computationally,
title = "Computationally Constructed Concepts: A Machine Learning Approach to Metaphor Interpretation Using Usage-Based Construction Grammatical Cues",
author = "Rosen, Zachary",
editor = "Beigman Klebanov, Beata and
Shutova, Ekaterina and
Lichtenstein, Patricia and
Muresan, Smaranda and
Wee, Chee",
booktitle = "Proceedings of the Workshop on Figurative Language Processing",
month = jun,
year = "2018",
address = "New Orleans, Louisiana",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W18-0912/",
doi = "10.18653/v1/W18-0912",
pages = "102--109",
abstract = "The current study seeks to implement a deep learning classification algorithm using argument-structure level representation of metaphoric constructions, for the identification of source domain mappings in metaphoric utterances. It thus builds on previous work in computational metaphor interpretation (Mohler et al. 2014; Shutova 2010; Bollegala {\&} Shutova 2013; Hong 2016; Su et al. 2017) while implementing a theoretical framework based off of work in the interface of metaphor and construction grammar (Sullivan 2006, 2007, 2013). The results indicate that it is possible to achieve an accuracy of approximately 80.4{\%} using the proposed method, combining construction grammatical features with a simple deep learning NN. I attribute this increase in accuracy to the use of constructional cues, extracted from the raw text of metaphoric instances."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="rosen-2018-computationally">
<titleInfo>
<title>Computationally Constructed Concepts: A Machine Learning Approach to Metaphor Interpretation Using Usage-Based Construction Grammatical Cues</title>
</titleInfo>
<name type="personal">
<namePart type="given">Zachary</namePart>
<namePart type="family">Rosen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Workshop on Figurative Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Beata</namePart>
<namePart type="family">Beigman Klebanov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Patricia</namePart>
<namePart type="family">Lichtenstein</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Smaranda</namePart>
<namePart type="family">Muresan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chee</namePart>
<namePart type="family">Wee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">New Orleans, Louisiana</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The current study seeks to implement a deep learning classification algorithm using argument-structure level representation of metaphoric constructions, for the identification of source domain mappings in metaphoric utterances. It thus builds on previous work in computational metaphor interpretation (Mohler et al. 2014; Shutova 2010; Bollegala & Shutova 2013; Hong 2016; Su et al. 2017) while implementing a theoretical framework based off of work in the interface of metaphor and construction grammar (Sullivan 2006, 2007, 2013). The results indicate that it is possible to achieve an accuracy of approximately 80.4% using the proposed method, combining construction grammatical features with a simple deep learning NN. I attribute this increase in accuracy to the use of constructional cues, extracted from the raw text of metaphoric instances.</abstract>
<identifier type="citekey">rosen-2018-computationally</identifier>
<identifier type="doi">10.18653/v1/W18-0912</identifier>
<location>
<url>https://aclanthology.org/W18-0912/</url>
</location>
<part>
<date>2018-06</date>
<extent unit="page">
<start>102</start>
<end>109</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Computationally Constructed Concepts: A Machine Learning Approach to Metaphor Interpretation Using Usage-Based Construction Grammatical Cues
%A Rosen, Zachary
%Y Beigman Klebanov, Beata
%Y Shutova, Ekaterina
%Y Lichtenstein, Patricia
%Y Muresan, Smaranda
%Y Wee, Chee
%S Proceedings of the Workshop on Figurative Language Processing
%D 2018
%8 June
%I Association for Computational Linguistics
%C New Orleans, Louisiana
%F rosen-2018-computationally
%X The current study seeks to implement a deep learning classification algorithm using argument-structure level representation of metaphoric constructions, for the identification of source domain mappings in metaphoric utterances. It thus builds on previous work in computational metaphor interpretation (Mohler et al. 2014; Shutova 2010; Bollegala & Shutova 2013; Hong 2016; Su et al. 2017) while implementing a theoretical framework based off of work in the interface of metaphor and construction grammar (Sullivan 2006, 2007, 2013). The results indicate that it is possible to achieve an accuracy of approximately 80.4% using the proposed method, combining construction grammatical features with a simple deep learning NN. I attribute this increase in accuracy to the use of constructional cues, extracted from the raw text of metaphoric instances.
%R 10.18653/v1/W18-0912
%U https://aclanthology.org/W18-0912/
%U https://doi.org/10.18653/v1/W18-0912
%P 102-109
Markdown (Informal)
[Computationally Constructed Concepts: A Machine Learning Approach to Metaphor Interpretation Using Usage-Based Construction Grammatical Cues](https://aclanthology.org/W18-0912/) (Rosen, Fig-Lang 2018)
ACL