@inproceedings{wu-etal-2018-neural,
title = "Neural Metaphor Detecting with {CNN}-{LSTM} Model",
author = "Wu, Chuhan and
Wu, Fangzhao and
Chen, Yubo and
Wu, Sixing and
Yuan, Zhigang and
Huang, Yongfeng",
editor = "Beigman Klebanov, Beata and
Shutova, Ekaterina and
Lichtenstein, Patricia and
Muresan, Smaranda and
Wee, Chee",
booktitle = "Proceedings of the Workshop on Figurative Language Processing",
month = jun,
year = "2018",
address = "New Orleans, Louisiana",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W18-0913",
doi = "10.18653/v1/W18-0913",
pages = "110--114",
abstract = "Metaphors are figurative languages widely used in daily life and literatures. It{'}s an important task to detect the metaphors evoked by texts. Thus, the metaphor shared task is aimed to extract metaphors from plain texts at word level. We propose to use a CNN-LSTM model for this task. Our model combines CNN and LSTM layers to utilize both local and long-range contextual information for identifying metaphorical information. In addition, we compare the performance of the softmax classifier and conditional random field (CRF) for sequential labeling in this task. We also incorporated some additional features such as part of speech (POS) tags and word cluster to improve the performance of model. Our best model achieved 65.06{\%} F-score in the all POS testing subtask and 67.15{\%} in the verbs testing subtask.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="wu-etal-2018-neural">
<titleInfo>
<title>Neural Metaphor Detecting with CNN-LSTM Model</title>
</titleInfo>
<name type="personal">
<namePart type="given">Chuhan</namePart>
<namePart type="family">Wu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fangzhao</namePart>
<namePart type="family">Wu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yubo</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sixing</namePart>
<namePart type="family">Wu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhigang</namePart>
<namePart type="family">Yuan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yongfeng</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Workshop on Figurative Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Beata</namePart>
<namePart type="family">Beigman Klebanov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Patricia</namePart>
<namePart type="family">Lichtenstein</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Smaranda</namePart>
<namePart type="family">Muresan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chee</namePart>
<namePart type="family">Wee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">New Orleans, Louisiana</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Metaphors are figurative languages widely used in daily life and literatures. It’s an important task to detect the metaphors evoked by texts. Thus, the metaphor shared task is aimed to extract metaphors from plain texts at word level. We propose to use a CNN-LSTM model for this task. Our model combines CNN and LSTM layers to utilize both local and long-range contextual information for identifying metaphorical information. In addition, we compare the performance of the softmax classifier and conditional random field (CRF) for sequential labeling in this task. We also incorporated some additional features such as part of speech (POS) tags and word cluster to improve the performance of model. Our best model achieved 65.06% F-score in the all POS testing subtask and 67.15% in the verbs testing subtask.</abstract>
<identifier type="citekey">wu-etal-2018-neural</identifier>
<identifier type="doi">10.18653/v1/W18-0913</identifier>
<location>
<url>https://aclanthology.org/W18-0913</url>
</location>
<part>
<date>2018-06</date>
<extent unit="page">
<start>110</start>
<end>114</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Neural Metaphor Detecting with CNN-LSTM Model
%A Wu, Chuhan
%A Wu, Fangzhao
%A Chen, Yubo
%A Wu, Sixing
%A Yuan, Zhigang
%A Huang, Yongfeng
%Y Beigman Klebanov, Beata
%Y Shutova, Ekaterina
%Y Lichtenstein, Patricia
%Y Muresan, Smaranda
%Y Wee, Chee
%S Proceedings of the Workshop on Figurative Language Processing
%D 2018
%8 June
%I Association for Computational Linguistics
%C New Orleans, Louisiana
%F wu-etal-2018-neural
%X Metaphors are figurative languages widely used in daily life and literatures. It’s an important task to detect the metaphors evoked by texts. Thus, the metaphor shared task is aimed to extract metaphors from plain texts at word level. We propose to use a CNN-LSTM model for this task. Our model combines CNN and LSTM layers to utilize both local and long-range contextual information for identifying metaphorical information. In addition, we compare the performance of the softmax classifier and conditional random field (CRF) for sequential labeling in this task. We also incorporated some additional features such as part of speech (POS) tags and word cluster to improve the performance of model. Our best model achieved 65.06% F-score in the all POS testing subtask and 67.15% in the verbs testing subtask.
%R 10.18653/v1/W18-0913
%U https://aclanthology.org/W18-0913
%U https://doi.org/10.18653/v1/W18-0913
%P 110-114
Markdown (Informal)
[Neural Metaphor Detecting with CNN-LSTM Model](https://aclanthology.org/W18-0913) (Wu et al., Fig-Lang 2018)
ACL
- Chuhan Wu, Fangzhao Wu, Yubo Chen, Sixing Wu, Zhigang Yuan, and Yongfeng Huang. 2018. Neural Metaphor Detecting with CNN-LSTM Model. In Proceedings of the Workshop on Figurative Language Processing, pages 110–114, New Orleans, Louisiana. Association for Computational Linguistics.