@inproceedings{luo-etal-2018-emotionx,
title = "{E}motion{X}-{DLC}: Self-Attentive {B}i{LSTM} for Detecting Sequential Emotions in Dialogues",
author = "Luo, Linkai and
Yang, Haiqin and
Chin, Francis Y. L.",
editor = "Ku, Lun-Wei and
Li, Cheng-Te",
booktitle = "Proceedings of the Sixth International Workshop on Natural Language Processing for Social Media",
month = jul,
year = "2018",
address = "Melbourne, Australia",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W18-3506/",
doi = "10.18653/v1/W18-3506",
pages = "32--36",
abstract = "In this paper, we propose a self-attentive bidirectional long short-term memory (SA-BiLSTM) network to predict multiple emotions for the EmotionX challenge. The BiLSTM exhibits the power of modeling the word dependencies, and extracting the most relevant features for emotion classification. Building on top of BiLSTM, the self-attentive network can model the contextual dependencies between utterances which are helpful for classifying the ambiguous emotions. We achieve 59.6 and 55.0 unweighted accuracy scores in the Friends and the EmotionPush test sets, respectively."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="luo-etal-2018-emotionx">
<titleInfo>
<title>EmotionX-DLC: Self-Attentive BiLSTM for Detecting Sequential Emotions in Dialogues</title>
</titleInfo>
<name type="personal">
<namePart type="given">Linkai</namePart>
<namePart type="family">Luo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Haiqin</namePart>
<namePart type="family">Yang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Francis</namePart>
<namePart type="given">Y</namePart>
<namePart type="given">L</namePart>
<namePart type="family">Chin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Sixth International Workshop on Natural Language Processing for Social Media</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lun-Wei</namePart>
<namePart type="family">Ku</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Cheng-Te</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Melbourne, Australia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper, we propose a self-attentive bidirectional long short-term memory (SA-BiLSTM) network to predict multiple emotions for the EmotionX challenge. The BiLSTM exhibits the power of modeling the word dependencies, and extracting the most relevant features for emotion classification. Building on top of BiLSTM, the self-attentive network can model the contextual dependencies between utterances which are helpful for classifying the ambiguous emotions. We achieve 59.6 and 55.0 unweighted accuracy scores in the Friends and the EmotionPush test sets, respectively.</abstract>
<identifier type="citekey">luo-etal-2018-emotionx</identifier>
<identifier type="doi">10.18653/v1/W18-3506</identifier>
<location>
<url>https://aclanthology.org/W18-3506/</url>
</location>
<part>
<date>2018-07</date>
<extent unit="page">
<start>32</start>
<end>36</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T EmotionX-DLC: Self-Attentive BiLSTM for Detecting Sequential Emotions in Dialogues
%A Luo, Linkai
%A Yang, Haiqin
%A Chin, Francis Y. L.
%Y Ku, Lun-Wei
%Y Li, Cheng-Te
%S Proceedings of the Sixth International Workshop on Natural Language Processing for Social Media
%D 2018
%8 July
%I Association for Computational Linguistics
%C Melbourne, Australia
%F luo-etal-2018-emotionx
%X In this paper, we propose a self-attentive bidirectional long short-term memory (SA-BiLSTM) network to predict multiple emotions for the EmotionX challenge. The BiLSTM exhibits the power of modeling the word dependencies, and extracting the most relevant features for emotion classification. Building on top of BiLSTM, the self-attentive network can model the contextual dependencies between utterances which are helpful for classifying the ambiguous emotions. We achieve 59.6 and 55.0 unweighted accuracy scores in the Friends and the EmotionPush test sets, respectively.
%R 10.18653/v1/W18-3506
%U https://aclanthology.org/W18-3506/
%U https://doi.org/10.18653/v1/W18-3506
%P 32-36
Markdown (Informal)
[EmotionX-DLC: Self-Attentive BiLSTM for Detecting Sequential Emotions in Dialogues](https://aclanthology.org/W18-3506/) (Luo et al., SocialNLP 2018)
ACL