@inproceedings{khosla-2018-emotionx,
    title = "{E}motion{X}-{AR}: {CNN}-{DCNN} autoencoder based Emotion Classifier",
    author = "Khosla, Sopan",
    editor = "Ku, Lun-Wei  and
      Li, Cheng-Te",
    booktitle = "Proceedings of the Sixth International Workshop on Natural Language Processing for Social Media",
    month = jul,
    year = "2018",
    address = "Melbourne, Australia",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/W18-3507/",
    doi = "10.18653/v1/W18-3507",
    pages = "37--44",
    abstract = "In this paper, we model emotions in EmotionLines dataset using a convolutional-deconvolutional autoencoder (CNN-DCNN) framework. We show that adding a joint reconstruction loss improves performance. Quantitative evaluation with jointly trained network, augmented with linguistic features, reports best accuracies for emotion prediction; namely joy, sadness, anger, and neutral emotion in text."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="khosla-2018-emotionx">
    <titleInfo>
        <title>EmotionX-AR: CNN-DCNN autoencoder based Emotion Classifier</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Sopan</namePart>
        <namePart type="family">Khosla</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2018-07</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the Sixth International Workshop on Natural Language Processing for Social Media</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Lun-Wei</namePart>
            <namePart type="family">Ku</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Cheng-Te</namePart>
            <namePart type="family">Li</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">Melbourne, Australia</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>In this paper, we model emotions in EmotionLines dataset using a convolutional-deconvolutional autoencoder (CNN-DCNN) framework. We show that adding a joint reconstruction loss improves performance. Quantitative evaluation with jointly trained network, augmented with linguistic features, reports best accuracies for emotion prediction; namely joy, sadness, anger, and neutral emotion in text.</abstract>
    <identifier type="citekey">khosla-2018-emotionx</identifier>
    <identifier type="doi">10.18653/v1/W18-3507</identifier>
    <location>
        <url>https://aclanthology.org/W18-3507/</url>
    </location>
    <part>
        <date>2018-07</date>
        <extent unit="page">
            <start>37</start>
            <end>44</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T EmotionX-AR: CNN-DCNN autoencoder based Emotion Classifier
%A Khosla, Sopan
%Y Ku, Lun-Wei
%Y Li, Cheng-Te
%S Proceedings of the Sixth International Workshop on Natural Language Processing for Social Media
%D 2018
%8 July
%I Association for Computational Linguistics
%C Melbourne, Australia
%F khosla-2018-emotionx
%X In this paper, we model emotions in EmotionLines dataset using a convolutional-deconvolutional autoencoder (CNN-DCNN) framework. We show that adding a joint reconstruction loss improves performance. Quantitative evaluation with jointly trained network, augmented with linguistic features, reports best accuracies for emotion prediction; namely joy, sadness, anger, and neutral emotion in text.
%R 10.18653/v1/W18-3507
%U https://aclanthology.org/W18-3507/
%U https://doi.org/10.18653/v1/W18-3507
%P 37-44
Markdown (Informal)
[EmotionX-AR: CNN-DCNN autoencoder based Emotion Classifier](https://aclanthology.org/W18-3507/) (Khosla, SocialNLP 2018)
ACL