@inproceedings{khosla-2018-emotionx,
title = "{E}motion{X}-{AR}: {CNN}-{DCNN} autoencoder based Emotion Classifier",
author = "Khosla, Sopan",
editor = "Ku, Lun-Wei and
Li, Cheng-Te",
booktitle = "Proceedings of the Sixth International Workshop on Natural Language Processing for Social Media",
month = jul,
year = "2018",
address = "Melbourne, Australia",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W18-3507",
doi = "10.18653/v1/W18-3507",
pages = "37--44",
abstract = "In this paper, we model emotions in EmotionLines dataset using a convolutional-deconvolutional autoencoder (CNN-DCNN) framework. We show that adding a joint reconstruction loss improves performance. Quantitative evaluation with jointly trained network, augmented with linguistic features, reports best accuracies for emotion prediction; namely joy, sadness, anger, and neutral emotion in text.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="khosla-2018-emotionx">
<titleInfo>
<title>EmotionX-AR: CNN-DCNN autoencoder based Emotion Classifier</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sopan</namePart>
<namePart type="family">Khosla</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Sixth International Workshop on Natural Language Processing for Social Media</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lun-Wei</namePart>
<namePart type="family">Ku</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Cheng-Te</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Melbourne, Australia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper, we model emotions in EmotionLines dataset using a convolutional-deconvolutional autoencoder (CNN-DCNN) framework. We show that adding a joint reconstruction loss improves performance. Quantitative evaluation with jointly trained network, augmented with linguistic features, reports best accuracies for emotion prediction; namely joy, sadness, anger, and neutral emotion in text.</abstract>
<identifier type="citekey">khosla-2018-emotionx</identifier>
<identifier type="doi">10.18653/v1/W18-3507</identifier>
<location>
<url>https://aclanthology.org/W18-3507</url>
</location>
<part>
<date>2018-07</date>
<extent unit="page">
<start>37</start>
<end>44</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T EmotionX-AR: CNN-DCNN autoencoder based Emotion Classifier
%A Khosla, Sopan
%Y Ku, Lun-Wei
%Y Li, Cheng-Te
%S Proceedings of the Sixth International Workshop on Natural Language Processing for Social Media
%D 2018
%8 July
%I Association for Computational Linguistics
%C Melbourne, Australia
%F khosla-2018-emotionx
%X In this paper, we model emotions in EmotionLines dataset using a convolutional-deconvolutional autoencoder (CNN-DCNN) framework. We show that adding a joint reconstruction loss improves performance. Quantitative evaluation with jointly trained network, augmented with linguistic features, reports best accuracies for emotion prediction; namely joy, sadness, anger, and neutral emotion in text.
%R 10.18653/v1/W18-3507
%U https://aclanthology.org/W18-3507
%U https://doi.org/10.18653/v1/W18-3507
%P 37-44
Markdown (Informal)
[EmotionX-AR: CNN-DCNN autoencoder based Emotion Classifier](https://aclanthology.org/W18-3507) (Khosla, SocialNLP 2018)
ACL