@inproceedings{saxena-etal-2018-emotionx,
    title = "{E}motion{X}-Area66: Predicting Emotions in Dialogues using Hierarchical Attention Network with Sequence Labeling",
    author = "Saxena, Rohit  and
      Bhat, Savita  and
      Pedanekar, Niranjan",
    editor = "Ku, Lun-Wei  and
      Li, Cheng-Te",
    booktitle = "Proceedings of the Sixth International Workshop on Natural Language Processing for Social Media",
    month = jul,
    year = "2018",
    address = "Melbourne, Australia",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/W18-3509/",
    doi = "10.18653/v1/W18-3509",
    pages = "50--55",
    abstract = "This paper presents our system submitted to the EmotionX challenge. It is an emotion detection task on dialogues in the EmotionLines dataset. We formulate this as a hierarchical network where network learns data representation at both utterance level and dialogue level. Our model is inspired by Hierarchical Attention network (HAN) and uses pre-trained word embeddings as features. We formulate emotion detection in dialogues as a sequence labeling problem to capture the dependencies among labels. We report the performance accuracy for four emotions (anger, joy, neutral and sadness). The model achieved unweighted accuracy of 55.38{\%} on Friends test dataset and 56.73{\%} on EmotionPush test dataset. We report an improvement of 22.51{\%} in Friends dataset and 36.04{\%} in EmotionPush dataset over baseline results."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="saxena-etal-2018-emotionx">
    <titleInfo>
        <title>EmotionX-Area66: Predicting Emotions in Dialogues using Hierarchical Attention Network with Sequence Labeling</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Rohit</namePart>
        <namePart type="family">Saxena</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Savita</namePart>
        <namePart type="family">Bhat</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Niranjan</namePart>
        <namePart type="family">Pedanekar</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2018-07</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the Sixth International Workshop on Natural Language Processing for Social Media</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Lun-Wei</namePart>
            <namePart type="family">Ku</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Cheng-Te</namePart>
            <namePart type="family">Li</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">Melbourne, Australia</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>This paper presents our system submitted to the EmotionX challenge. It is an emotion detection task on dialogues in the EmotionLines dataset. We formulate this as a hierarchical network where network learns data representation at both utterance level and dialogue level. Our model is inspired by Hierarchical Attention network (HAN) and uses pre-trained word embeddings as features. We formulate emotion detection in dialogues as a sequence labeling problem to capture the dependencies among labels. We report the performance accuracy for four emotions (anger, joy, neutral and sadness). The model achieved unweighted accuracy of 55.38% on Friends test dataset and 56.73% on EmotionPush test dataset. We report an improvement of 22.51% in Friends dataset and 36.04% in EmotionPush dataset over baseline results.</abstract>
    <identifier type="citekey">saxena-etal-2018-emotionx</identifier>
    <identifier type="doi">10.18653/v1/W18-3509</identifier>
    <location>
        <url>https://aclanthology.org/W18-3509/</url>
    </location>
    <part>
        <date>2018-07</date>
        <extent unit="page">
            <start>50</start>
            <end>55</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T EmotionX-Area66: Predicting Emotions in Dialogues using Hierarchical Attention Network with Sequence Labeling
%A Saxena, Rohit
%A Bhat, Savita
%A Pedanekar, Niranjan
%Y Ku, Lun-Wei
%Y Li, Cheng-Te
%S Proceedings of the Sixth International Workshop on Natural Language Processing for Social Media
%D 2018
%8 July
%I Association for Computational Linguistics
%C Melbourne, Australia
%F saxena-etal-2018-emotionx
%X This paper presents our system submitted to the EmotionX challenge. It is an emotion detection task on dialogues in the EmotionLines dataset. We formulate this as a hierarchical network where network learns data representation at both utterance level and dialogue level. Our model is inspired by Hierarchical Attention network (HAN) and uses pre-trained word embeddings as features. We formulate emotion detection in dialogues as a sequence labeling problem to capture the dependencies among labels. We report the performance accuracy for four emotions (anger, joy, neutral and sadness). The model achieved unweighted accuracy of 55.38% on Friends test dataset and 56.73% on EmotionPush test dataset. We report an improvement of 22.51% in Friends dataset and 36.04% in EmotionPush dataset over baseline results.
%R 10.18653/v1/W18-3509
%U https://aclanthology.org/W18-3509/
%U https://doi.org/10.18653/v1/W18-3509
%P 50-55
Markdown (Informal)
[EmotionX-Area66: Predicting Emotions in Dialogues using Hierarchical Attention Network with Sequence Labeling](https://aclanthology.org/W18-3509/) (Saxena et al., SocialNLP 2018)
ACL