@inproceedings{elder-hokamp-2018-generating,
title = "Generating High-Quality Surface Realizations Using Data Augmentation and Factored Sequence Models",
author = "Elder, Henry and
Hokamp, Chris",
editor = "Mille, Simon and
Belz, Anja and
Bohnet, Bernd and
Pitler, Emily and
Wanner, Leo",
booktitle = "Proceedings of the First Workshop on Multilingual Surface Realisation",
month = jul,
year = "2018",
address = "Melbourne, Australia",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W18-3606/",
doi = "10.18653/v1/W18-3606",
pages = "49--53",
abstract = "This work presents state of the art results in reconstruction of surface realizations from obfuscated text. We identify the lack of sufficient training data as the major obstacle to training high-performing models, and solve this issue by generating large amounts of synthetic training data. We also propose preprocessing techniques which make the structure contained in the input features more accessible to sequence models. Our models were ranked first on all evaluation metrics in the English portion of the 2018 Surface Realization shared task."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="elder-hokamp-2018-generating">
<titleInfo>
<title>Generating High-Quality Surface Realizations Using Data Augmentation and Factored Sequence Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Henry</namePart>
<namePart type="family">Elder</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chris</namePart>
<namePart type="family">Hokamp</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the First Workshop on Multilingual Surface Realisation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Simon</namePart>
<namePart type="family">Mille</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anja</namePart>
<namePart type="family">Belz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bernd</namePart>
<namePart type="family">Bohnet</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Emily</namePart>
<namePart type="family">Pitler</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leo</namePart>
<namePart type="family">Wanner</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Melbourne, Australia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This work presents state of the art results in reconstruction of surface realizations from obfuscated text. We identify the lack of sufficient training data as the major obstacle to training high-performing models, and solve this issue by generating large amounts of synthetic training data. We also propose preprocessing techniques which make the structure contained in the input features more accessible to sequence models. Our models were ranked first on all evaluation metrics in the English portion of the 2018 Surface Realization shared task.</abstract>
<identifier type="citekey">elder-hokamp-2018-generating</identifier>
<identifier type="doi">10.18653/v1/W18-3606</identifier>
<location>
<url>https://aclanthology.org/W18-3606/</url>
</location>
<part>
<date>2018-07</date>
<extent unit="page">
<start>49</start>
<end>53</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Generating High-Quality Surface Realizations Using Data Augmentation and Factored Sequence Models
%A Elder, Henry
%A Hokamp, Chris
%Y Mille, Simon
%Y Belz, Anja
%Y Bohnet, Bernd
%Y Pitler, Emily
%Y Wanner, Leo
%S Proceedings of the First Workshop on Multilingual Surface Realisation
%D 2018
%8 July
%I Association for Computational Linguistics
%C Melbourne, Australia
%F elder-hokamp-2018-generating
%X This work presents state of the art results in reconstruction of surface realizations from obfuscated text. We identify the lack of sufficient training data as the major obstacle to training high-performing models, and solve this issue by generating large amounts of synthetic training data. We also propose preprocessing techniques which make the structure contained in the input features more accessible to sequence models. Our models were ranked first on all evaluation metrics in the English portion of the 2018 Surface Realization shared task.
%R 10.18653/v1/W18-3606
%U https://aclanthology.org/W18-3606/
%U https://doi.org/10.18653/v1/W18-3606
%P 49-53
Markdown (Informal)
[Generating High-Quality Surface Realizations Using Data Augmentation and Factored Sequence Models](https://aclanthology.org/W18-3606/) (Elder & Hokamp, ACL 2018)
ACL