@inproceedings{mayer-etal-2018-evidence,
title = "Evidence Type Classification in Randomized Controlled Trials",
author = "Mayer, Tobias and
Cabrio, Elena and
Villata, Serena",
editor = "Slonim, Noam and
Aharonov, Ranit",
booktitle = "Proceedings of the 5th Workshop on Argument Mining",
month = nov,
year = "2018",
address = "Brussels, Belgium",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W18-5204",
doi = "10.18653/v1/W18-5204",
pages = "29--34",
abstract = "Randomized Controlled Trials (RCT) are a common type of experimental studies in the medical domain for evidence-based decision making. The ability to automatically extract the \textit{arguments} proposed therein can be of valuable support for clinicians and practitioners in their daily evidence-based decision making activities. Given the peculiarity of the medical domain and the required level of detail, standard approaches to argument component detection in \textit{argument(ation) mining} are not fine-grained enough to support such activities. In this paper, we introduce a new sub-task of the argument component identification task: \textit{evidence type classification}. To address it, we propose a supervised approach and we test it on a set of RCT abstracts on different medical topics.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="mayer-etal-2018-evidence">
<titleInfo>
<title>Evidence Type Classification in Randomized Controlled Trials</title>
</titleInfo>
<name type="personal">
<namePart type="given">Tobias</namePart>
<namePart type="family">Mayer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Elena</namePart>
<namePart type="family">Cabrio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Serena</namePart>
<namePart type="family">Villata</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 5th Workshop on Argument Mining</title>
</titleInfo>
<name type="personal">
<namePart type="given">Noam</namePart>
<namePart type="family">Slonim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ranit</namePart>
<namePart type="family">Aharonov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Brussels, Belgium</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Randomized Controlled Trials (RCT) are a common type of experimental studies in the medical domain for evidence-based decision making. The ability to automatically extract the arguments proposed therein can be of valuable support for clinicians and practitioners in their daily evidence-based decision making activities. Given the peculiarity of the medical domain and the required level of detail, standard approaches to argument component detection in argument(ation) mining are not fine-grained enough to support such activities. In this paper, we introduce a new sub-task of the argument component identification task: evidence type classification. To address it, we propose a supervised approach and we test it on a set of RCT abstracts on different medical topics.</abstract>
<identifier type="citekey">mayer-etal-2018-evidence</identifier>
<identifier type="doi">10.18653/v1/W18-5204</identifier>
<location>
<url>https://aclanthology.org/W18-5204</url>
</location>
<part>
<date>2018-11</date>
<extent unit="page">
<start>29</start>
<end>34</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Evidence Type Classification in Randomized Controlled Trials
%A Mayer, Tobias
%A Cabrio, Elena
%A Villata, Serena
%Y Slonim, Noam
%Y Aharonov, Ranit
%S Proceedings of the 5th Workshop on Argument Mining
%D 2018
%8 November
%I Association for Computational Linguistics
%C Brussels, Belgium
%F mayer-etal-2018-evidence
%X Randomized Controlled Trials (RCT) are a common type of experimental studies in the medical domain for evidence-based decision making. The ability to automatically extract the arguments proposed therein can be of valuable support for clinicians and practitioners in their daily evidence-based decision making activities. Given the peculiarity of the medical domain and the required level of detail, standard approaches to argument component detection in argument(ation) mining are not fine-grained enough to support such activities. In this paper, we introduce a new sub-task of the argument component identification task: evidence type classification. To address it, we propose a supervised approach and we test it on a set of RCT abstracts on different medical topics.
%R 10.18653/v1/W18-5204
%U https://aclanthology.org/W18-5204
%U https://doi.org/10.18653/v1/W18-5204
%P 29-34
Markdown (Informal)
[Evidence Type Classification in Randomized Controlled Trials](https://aclanthology.org/W18-5204) (Mayer et al., ArgMining 2018)
ACL