@inproceedings{groves-etal-2018-treat,
title = "Treat the system like a human student: Automatic naturalness evaluation of generated text without reference texts",
author = "Groves, Isabel and
Tian, Ye and
Douratsos, Ioannis",
editor = "Krahmer, Emiel and
Gatt, Albert and
Goudbeek, Martijn",
booktitle = "Proceedings of the 11th International Conference on Natural Language Generation",
month = nov,
year = "2018",
address = "Tilburg University, The Netherlands",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W18-6512/",
doi = "10.18653/v1/W18-6512",
pages = "109--118",
abstract = "The current most popular method for automatic Natural Language Generation (NLG) evaluation is comparing generated text with human-written reference sentences using a metrics system, which has drawbacks around reliability and scalability. We draw inspiration from second language (L2) assessment and extract a set of linguistic features to predict human judgments of sentence naturalness. Our experiment using a small dataset showed that the feature-based approach yields promising results, with the added potential of providing interpretability into the source of the problems."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="groves-etal-2018-treat">
<titleInfo>
<title>Treat the system like a human student: Automatic naturalness evaluation of generated text without reference texts</title>
</titleInfo>
<name type="personal">
<namePart type="given">Isabel</namePart>
<namePart type="family">Groves</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ye</namePart>
<namePart type="family">Tian</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ioannis</namePart>
<namePart type="family">Douratsos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 11th International Conference on Natural Language Generation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Emiel</namePart>
<namePart type="family">Krahmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Albert</namePart>
<namePart type="family">Gatt</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Martijn</namePart>
<namePart type="family">Goudbeek</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Tilburg University, The Netherlands</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The current most popular method for automatic Natural Language Generation (NLG) evaluation is comparing generated text with human-written reference sentences using a metrics system, which has drawbacks around reliability and scalability. We draw inspiration from second language (L2) assessment and extract a set of linguistic features to predict human judgments of sentence naturalness. Our experiment using a small dataset showed that the feature-based approach yields promising results, with the added potential of providing interpretability into the source of the problems.</abstract>
<identifier type="citekey">groves-etal-2018-treat</identifier>
<identifier type="doi">10.18653/v1/W18-6512</identifier>
<location>
<url>https://aclanthology.org/W18-6512/</url>
</location>
<part>
<date>2018-11</date>
<extent unit="page">
<start>109</start>
<end>118</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Treat the system like a human student: Automatic naturalness evaluation of generated text without reference texts
%A Groves, Isabel
%A Tian, Ye
%A Douratsos, Ioannis
%Y Krahmer, Emiel
%Y Gatt, Albert
%Y Goudbeek, Martijn
%S Proceedings of the 11th International Conference on Natural Language Generation
%D 2018
%8 November
%I Association for Computational Linguistics
%C Tilburg University, The Netherlands
%F groves-etal-2018-treat
%X The current most popular method for automatic Natural Language Generation (NLG) evaluation is comparing generated text with human-written reference sentences using a metrics system, which has drawbacks around reliability and scalability. We draw inspiration from second language (L2) assessment and extract a set of linguistic features to predict human judgments of sentence naturalness. Our experiment using a small dataset showed that the feature-based approach yields promising results, with the added potential of providing interpretability into the source of the problems.
%R 10.18653/v1/W18-6512
%U https://aclanthology.org/W18-6512/
%U https://doi.org/10.18653/v1/W18-6512
%P 109-118
Markdown (Informal)
[Treat the system like a human student: Automatic naturalness evaluation of generated text without reference texts](https://aclanthology.org/W18-6512/) (Groves et al., INLG 2018)
ACL