@inproceedings{elder-etal-2018-e2e,
title = "{E}2{E} {NLG} Challenge Submission: Towards Controllable Generation of Diverse Natural Language",
author = "Elder, Henry and
Gehrmann, Sebastian and
O{'}Connor, Alexander and
Liu, Qun",
editor = "Krahmer, Emiel and
Gatt, Albert and
Goudbeek, Martijn",
booktitle = "Proceedings of the 11th International Conference on Natural Language Generation",
month = nov,
year = "2018",
address = "Tilburg University, The Netherlands",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W18-6556",
doi = "10.18653/v1/W18-6556",
pages = "457--462",
abstract = "In natural language generation (NLG), the task is to generate utterances from a more abstract input, such as structured data. An added challenge is to generate utterances that contain an accurate representation of the input, while reflecting the fluency and variety of human-generated text. In this paper, we report experiments with NLG models that can be used in task oriented dialogue systems. We explore the use of additional input to the model to encourage diversity and control of outputs. While our submission does not rank highly using automated metrics, qualitative investigation of generated utterances suggests the use of additional information in neural network NLG systems to be a promising research direction.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="elder-etal-2018-e2e">
<titleInfo>
<title>E2E NLG Challenge Submission: Towards Controllable Generation of Diverse Natural Language</title>
</titleInfo>
<name type="personal">
<namePart type="given">Henry</namePart>
<namePart type="family">Elder</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sebastian</namePart>
<namePart type="family">Gehrmann</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexander</namePart>
<namePart type="family">O’Connor</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Qun</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 11th International Conference on Natural Language Generation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Emiel</namePart>
<namePart type="family">Krahmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Albert</namePart>
<namePart type="family">Gatt</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Martijn</namePart>
<namePart type="family">Goudbeek</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Tilburg University, The Netherlands</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In natural language generation (NLG), the task is to generate utterances from a more abstract input, such as structured data. An added challenge is to generate utterances that contain an accurate representation of the input, while reflecting the fluency and variety of human-generated text. In this paper, we report experiments with NLG models that can be used in task oriented dialogue systems. We explore the use of additional input to the model to encourage diversity and control of outputs. While our submission does not rank highly using automated metrics, qualitative investigation of generated utterances suggests the use of additional information in neural network NLG systems to be a promising research direction.</abstract>
<identifier type="citekey">elder-etal-2018-e2e</identifier>
<identifier type="doi">10.18653/v1/W18-6556</identifier>
<location>
<url>https://aclanthology.org/W18-6556</url>
</location>
<part>
<date>2018-11</date>
<extent unit="page">
<start>457</start>
<end>462</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T E2E NLG Challenge Submission: Towards Controllable Generation of Diverse Natural Language
%A Elder, Henry
%A Gehrmann, Sebastian
%A O’Connor, Alexander
%A Liu, Qun
%Y Krahmer, Emiel
%Y Gatt, Albert
%Y Goudbeek, Martijn
%S Proceedings of the 11th International Conference on Natural Language Generation
%D 2018
%8 November
%I Association for Computational Linguistics
%C Tilburg University, The Netherlands
%F elder-etal-2018-e2e
%X In natural language generation (NLG), the task is to generate utterances from a more abstract input, such as structured data. An added challenge is to generate utterances that contain an accurate representation of the input, while reflecting the fluency and variety of human-generated text. In this paper, we report experiments with NLG models that can be used in task oriented dialogue systems. We explore the use of additional input to the model to encourage diversity and control of outputs. While our submission does not rank highly using automated metrics, qualitative investigation of generated utterances suggests the use of additional information in neural network NLG systems to be a promising research direction.
%R 10.18653/v1/W18-6556
%U https://aclanthology.org/W18-6556
%U https://doi.org/10.18653/v1/W18-6556
%P 457-462
Markdown (Informal)
[E2E NLG Challenge Submission: Towards Controllable Generation of Diverse Natural Language](https://aclanthology.org/W18-6556) (Elder et al., INLG 2018)
ACL