@inproceedings{courtland-etal-2019-modeling,
title = "Modeling performance differences on cognitive tests using {LSTM}s and skip-thought vectors trained on reported media consumption.",
author = "Courtland, Maury and
Davani, Aida and
Reyes, Melissa and
Yeh, Leigh and
Leung, Jun and
Kennedy, Brendan and
Dehghani, Morteza and
Zevin, Jason",
editor = "Volkova, Svitlana and
Jurgens, David and
Hovy, Dirk and
Bamman, David and
Tsur, Oren",
booktitle = "Proceedings of the Third Workshop on Natural Language Processing and Computational Social Science",
month = jun,
year = "2019",
address = "Minneapolis, Minnesota",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W19-2106",
doi = "10.18653/v1/W19-2106",
pages = "47--53",
abstract = "Cognitive tests have traditionally resorted to standardizing testing materials in the name of equality and because of the onerous nature of creating test items. This approach ignores participants{'} diverse language experiences that potentially significantly affect testing outcomes. Here, we seek to explain our prior finding of significant performance differences on two cognitive tests (reading span and SPiN) between clusters of participants based on their media consumption. Here, we model the language contained in these media sources using an LSTM trained on corpora of each cluster{'}s media sources to predict target words. We also model semantic similarity of test items with each cluster{'}s corpus using skip-thought vectors. We find robust, significant correlations between performance on the SPiN test and the LSTMs and skip-thought models we present here, but not the reading span test.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="courtland-etal-2019-modeling">
<titleInfo>
<title>Modeling performance differences on cognitive tests using LSTMs and skip-thought vectors trained on reported media consumption.</title>
</titleInfo>
<name type="personal">
<namePart type="given">Maury</namePart>
<namePart type="family">Courtland</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aida</namePart>
<namePart type="family">Davani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Melissa</namePart>
<namePart type="family">Reyes</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leigh</namePart>
<namePart type="family">Yeh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jun</namePart>
<namePart type="family">Leung</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Brendan</namePart>
<namePart type="family">Kennedy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Morteza</namePart>
<namePart type="family">Dehghani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jason</namePart>
<namePart type="family">Zevin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Third Workshop on Natural Language Processing and Computational Social Science</title>
</titleInfo>
<name type="personal">
<namePart type="given">Svitlana</namePart>
<namePart type="family">Volkova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Jurgens</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dirk</namePart>
<namePart type="family">Hovy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Bamman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Oren</namePart>
<namePart type="family">Tsur</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Minneapolis, Minnesota</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Cognitive tests have traditionally resorted to standardizing testing materials in the name of equality and because of the onerous nature of creating test items. This approach ignores participants’ diverse language experiences that potentially significantly affect testing outcomes. Here, we seek to explain our prior finding of significant performance differences on two cognitive tests (reading span and SPiN) between clusters of participants based on their media consumption. Here, we model the language contained in these media sources using an LSTM trained on corpora of each cluster’s media sources to predict target words. We also model semantic similarity of test items with each cluster’s corpus using skip-thought vectors. We find robust, significant correlations between performance on the SPiN test and the LSTMs and skip-thought models we present here, but not the reading span test.</abstract>
<identifier type="citekey">courtland-etal-2019-modeling</identifier>
<identifier type="doi">10.18653/v1/W19-2106</identifier>
<location>
<url>https://aclanthology.org/W19-2106</url>
</location>
<part>
<date>2019-06</date>
<extent unit="page">
<start>47</start>
<end>53</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Modeling performance differences on cognitive tests using LSTMs and skip-thought vectors trained on reported media consumption.
%A Courtland, Maury
%A Davani, Aida
%A Reyes, Melissa
%A Yeh, Leigh
%A Leung, Jun
%A Kennedy, Brendan
%A Dehghani, Morteza
%A Zevin, Jason
%Y Volkova, Svitlana
%Y Jurgens, David
%Y Hovy, Dirk
%Y Bamman, David
%Y Tsur, Oren
%S Proceedings of the Third Workshop on Natural Language Processing and Computational Social Science
%D 2019
%8 June
%I Association for Computational Linguistics
%C Minneapolis, Minnesota
%F courtland-etal-2019-modeling
%X Cognitive tests have traditionally resorted to standardizing testing materials in the name of equality and because of the onerous nature of creating test items. This approach ignores participants’ diverse language experiences that potentially significantly affect testing outcomes. Here, we seek to explain our prior finding of significant performance differences on two cognitive tests (reading span and SPiN) between clusters of participants based on their media consumption. Here, we model the language contained in these media sources using an LSTM trained on corpora of each cluster’s media sources to predict target words. We also model semantic similarity of test items with each cluster’s corpus using skip-thought vectors. We find robust, significant correlations between performance on the SPiN test and the LSTMs and skip-thought models we present here, but not the reading span test.
%R 10.18653/v1/W19-2106
%U https://aclanthology.org/W19-2106
%U https://doi.org/10.18653/v1/W19-2106
%P 47-53
Markdown (Informal)
[Modeling performance differences on cognitive tests using LSTMs and skip-thought vectors trained on reported media consumption.](https://aclanthology.org/W19-2106) (Courtland et al., NLP+CSS 2019)
ACL
- Maury Courtland, Aida Davani, Melissa Reyes, Leigh Yeh, Jun Leung, Brendan Kennedy, Morteza Dehghani, and Jason Zevin. 2019. Modeling performance differences on cognitive tests using LSTMs and skip-thought vectors trained on reported media consumption.. In Proceedings of the Third Workshop on Natural Language Processing and Computational Social Science, pages 47–53, Minneapolis, Minnesota. Association for Computational Linguistics.