@inproceedings{wang-cho-2019-bert,
title = "{BERT} has a Mouth, and It Must Speak: {BERT} as a {M}arkov Random Field Language Model",
author = "Wang, Alex and
Cho, Kyunghyun",
editor = "Bosselut, Antoine and
Celikyilmaz, Asli and
Ghazvininejad, Marjan and
Iyer, Srinivasan and
Khandelwal, Urvashi and
Rashkin, Hannah and
Wolf, Thomas",
booktitle = "Proceedings of the Workshop on Methods for Optimizing and Evaluating Neural Language Generation",
month = jun,
year = "2019",
address = "Minneapolis, Minnesota",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W19-2304/",
doi = "10.18653/v1/W19-2304",
pages = "30--36",
abstract = "We show that BERT (Devlin et al., 2018) is a Markov random field language model. This formulation gives way to a natural procedure to sample sentences from BERT. We generate from BERT and find that it can produce high quality, fluent generations. Compared to the generations of a traditional left-to-right language model, BERT generates sentences that are more diverse but of slightly worse quality."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="wang-cho-2019-bert">
<titleInfo>
<title>BERT has a Mouth, and It Must Speak: BERT as a Markov Random Field Language Model</title>
</titleInfo>
<name type="personal">
<namePart type="given">Alex</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kyunghyun</namePart>
<namePart type="family">Cho</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Workshop on Methods for Optimizing and Evaluating Neural Language Generation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Antoine</namePart>
<namePart type="family">Bosselut</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Asli</namePart>
<namePart type="family">Celikyilmaz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marjan</namePart>
<namePart type="family">Ghazvininejad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Srinivasan</namePart>
<namePart type="family">Iyer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Urvashi</namePart>
<namePart type="family">Khandelwal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hannah</namePart>
<namePart type="family">Rashkin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thomas</namePart>
<namePart type="family">Wolf</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Minneapolis, Minnesota</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We show that BERT (Devlin et al., 2018) is a Markov random field language model. This formulation gives way to a natural procedure to sample sentences from BERT. We generate from BERT and find that it can produce high quality, fluent generations. Compared to the generations of a traditional left-to-right language model, BERT generates sentences that are more diverse but of slightly worse quality.</abstract>
<identifier type="citekey">wang-cho-2019-bert</identifier>
<identifier type="doi">10.18653/v1/W19-2304</identifier>
<location>
<url>https://aclanthology.org/W19-2304/</url>
</location>
<part>
<date>2019-06</date>
<extent unit="page">
<start>30</start>
<end>36</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T BERT has a Mouth, and It Must Speak: BERT as a Markov Random Field Language Model
%A Wang, Alex
%A Cho, Kyunghyun
%Y Bosselut, Antoine
%Y Celikyilmaz, Asli
%Y Ghazvininejad, Marjan
%Y Iyer, Srinivasan
%Y Khandelwal, Urvashi
%Y Rashkin, Hannah
%Y Wolf, Thomas
%S Proceedings of the Workshop on Methods for Optimizing and Evaluating Neural Language Generation
%D 2019
%8 June
%I Association for Computational Linguistics
%C Minneapolis, Minnesota
%F wang-cho-2019-bert
%X We show that BERT (Devlin et al., 2018) is a Markov random field language model. This formulation gives way to a natural procedure to sample sentences from BERT. We generate from BERT and find that it can produce high quality, fluent generations. Compared to the generations of a traditional left-to-right language model, BERT generates sentences that are more diverse but of slightly worse quality.
%R 10.18653/v1/W19-2304
%U https://aclanthology.org/W19-2304/
%U https://doi.org/10.18653/v1/W19-2304
%P 30-36
Markdown (Informal)
[BERT has a Mouth, and It Must Speak: BERT as a Markov Random Field Language Model](https://aclanthology.org/W19-2304/) (Wang & Cho, NAACL 2019)
ACL