@inproceedings{lee-etal-2019-neural,
    title = "Neural Text Style Transfer via Denoising and Reranking",
    author = "Lee, Joseph  and
      Xie, Ziang  and
      Wang, Cindy  and
      Drach, Max  and
      Jurafsky, Dan  and
      Ng, Andrew",
    editor = "Bosselut, Antoine  and
      Celikyilmaz, Asli  and
      Ghazvininejad, Marjan  and
      Iyer, Srinivasan  and
      Khandelwal, Urvashi  and
      Rashkin, Hannah  and
      Wolf, Thomas",
    booktitle = "Proceedings of the Workshop on Methods for Optimizing and Evaluating Neural Language Generation",
    month = jun,
    year = "2019",
    address = "Minneapolis, Minnesota",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/W19-2309/",
    doi = "10.18653/v1/W19-2309",
    pages = "74--81",
    abstract = "We introduce a simple method for text style transfer that frames style transfer as denoising: we synthesize a noisy corpus and treat the source style as a noisy version of the target style. To control for aspects such as preserving meaning while modifying style, we propose a reranking approach in the data synthesis phase. We evaluate our method on three novel style transfer tasks: transferring between British and American varieties, text genres (formal vs. casual), and lyrics from different musical genres. By measuring style transfer quality, meaning preservation, and the fluency of generated outputs, we demonstrate that our method is able both to produce high-quality output while maintaining the flexibility to suggest syntactically rich stylistic edits."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="lee-etal-2019-neural">
    <titleInfo>
        <title>Neural Text Style Transfer via Denoising and Reranking</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Joseph</namePart>
        <namePart type="family">Lee</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Ziang</namePart>
        <namePart type="family">Xie</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Cindy</namePart>
        <namePart type="family">Wang</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Max</namePart>
        <namePart type="family">Drach</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Dan</namePart>
        <namePart type="family">Jurafsky</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Andrew</namePart>
        <namePart type="family">Ng</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2019-06</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the Workshop on Methods for Optimizing and Evaluating Neural Language Generation</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Antoine</namePart>
            <namePart type="family">Bosselut</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Asli</namePart>
            <namePart type="family">Celikyilmaz</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Marjan</namePart>
            <namePart type="family">Ghazvininejad</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Srinivasan</namePart>
            <namePart type="family">Iyer</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Urvashi</namePart>
            <namePart type="family">Khandelwal</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Hannah</namePart>
            <namePart type="family">Rashkin</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Thomas</namePart>
            <namePart type="family">Wolf</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">Minneapolis, Minnesota</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>We introduce a simple method for text style transfer that frames style transfer as denoising: we synthesize a noisy corpus and treat the source style as a noisy version of the target style. To control for aspects such as preserving meaning while modifying style, we propose a reranking approach in the data synthesis phase. We evaluate our method on three novel style transfer tasks: transferring between British and American varieties, text genres (formal vs. casual), and lyrics from different musical genres. By measuring style transfer quality, meaning preservation, and the fluency of generated outputs, we demonstrate that our method is able both to produce high-quality output while maintaining the flexibility to suggest syntactically rich stylistic edits.</abstract>
    <identifier type="citekey">lee-etal-2019-neural</identifier>
    <identifier type="doi">10.18653/v1/W19-2309</identifier>
    <location>
        <url>https://aclanthology.org/W19-2309/</url>
    </location>
    <part>
        <date>2019-06</date>
        <extent unit="page">
            <start>74</start>
            <end>81</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Neural Text Style Transfer via Denoising and Reranking
%A Lee, Joseph
%A Xie, Ziang
%A Wang, Cindy
%A Drach, Max
%A Jurafsky, Dan
%A Ng, Andrew
%Y Bosselut, Antoine
%Y Celikyilmaz, Asli
%Y Ghazvininejad, Marjan
%Y Iyer, Srinivasan
%Y Khandelwal, Urvashi
%Y Rashkin, Hannah
%Y Wolf, Thomas
%S Proceedings of the Workshop on Methods for Optimizing and Evaluating Neural Language Generation
%D 2019
%8 June
%I Association for Computational Linguistics
%C Minneapolis, Minnesota
%F lee-etal-2019-neural
%X We introduce a simple method for text style transfer that frames style transfer as denoising: we synthesize a noisy corpus and treat the source style as a noisy version of the target style. To control for aspects such as preserving meaning while modifying style, we propose a reranking approach in the data synthesis phase. We evaluate our method on three novel style transfer tasks: transferring between British and American varieties, text genres (formal vs. casual), and lyrics from different musical genres. By measuring style transfer quality, meaning preservation, and the fluency of generated outputs, we demonstrate that our method is able both to produce high-quality output while maintaining the flexibility to suggest syntactically rich stylistic edits.
%R 10.18653/v1/W19-2309
%U https://aclanthology.org/W19-2309/
%U https://doi.org/10.18653/v1/W19-2309
%P 74-81
Markdown (Informal)
[Neural Text Style Transfer via Denoising and Reranking](https://aclanthology.org/W19-2309/) (Lee et al., NAACL 2019)
ACL
- Joseph Lee, Ziang Xie, Cindy Wang, Max Drach, Dan Jurafsky, and Andrew Ng. 2019. Neural Text Style Transfer via Denoising and Reranking. In Proceedings of the Workshop on Methods for Optimizing and Evaluating Neural Language Generation, pages 74–81, Minneapolis, Minnesota. Association for Computational Linguistics.