@inproceedings{grundkiewicz-etal-2019-neural,
title = "Neural Grammatical Error Correction Systems with Unsupervised Pre-training on Synthetic Data",
author = "Grundkiewicz, Roman and
Junczys-Dowmunt, Marcin and
Heafield, Kenneth",
editor = "Yannakoudakis, Helen and
Kochmar, Ekaterina and
Leacock, Claudia and
Madnani, Nitin and
Pil{\'a}n, Ildik{\'o} and
Zesch, Torsten",
booktitle = "Proceedings of the Fourteenth Workshop on Innovative Use of NLP for Building Educational Applications",
month = aug,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W19-4427/",
doi = "10.18653/v1/W19-4427",
pages = "252--263",
abstract = "Considerable effort has been made to address the data sparsity problem in neural grammatical error correction. In this work, we propose a simple and surprisingly effective unsupervised synthetic error generation method based on confusion sets extracted from a spellchecker to increase the amount of training data. Synthetic data is used to pre-train a Transformer sequence-to-sequence model, which not only improves over a strong baseline trained on authentic error-annotated data, but also enables the development of a practical GEC system in a scenario where little genuine error-annotated data is available. The developed systems placed first in the BEA19 shared task, achieving 69.47 and 64.24 F$_{0.5}$ in the restricted and low-resource tracks respectively, both on the W{\&}I+LOCNESS test set. On the popular CoNLL 2014 test set, we report state-of-the-art results of 64.16 M{\texttwosuperior} for the submitted system, and 61.30 M{\texttwosuperior} for the constrained system trained on the NUCLE and Lang-8 data."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="grundkiewicz-etal-2019-neural">
<titleInfo>
<title>Neural Grammatical Error Correction Systems with Unsupervised Pre-training on Synthetic Data</title>
</titleInfo>
<name type="personal">
<namePart type="given">Roman</namePart>
<namePart type="family">Grundkiewicz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marcin</namePart>
<namePart type="family">Junczys-Dowmunt</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kenneth</namePart>
<namePart type="family">Heafield</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Fourteenth Workshop on Innovative Use of NLP for Building Educational Applications</title>
</titleInfo>
<name type="personal">
<namePart type="given">Helen</namePart>
<namePart type="family">Yannakoudakis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Kochmar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Claudia</namePart>
<namePart type="family">Leacock</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nitin</namePart>
<namePart type="family">Madnani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ildikó</namePart>
<namePart type="family">Pilán</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Torsten</namePart>
<namePart type="family">Zesch</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Florence, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Considerable effort has been made to address the data sparsity problem in neural grammatical error correction. In this work, we propose a simple and surprisingly effective unsupervised synthetic error generation method based on confusion sets extracted from a spellchecker to increase the amount of training data. Synthetic data is used to pre-train a Transformer sequence-to-sequence model, which not only improves over a strong baseline trained on authentic error-annotated data, but also enables the development of a practical GEC system in a scenario where little genuine error-annotated data is available. The developed systems placed first in the BEA19 shared task, achieving 69.47 and 64.24 F₀.5 in the restricted and low-resource tracks respectively, both on the W&I+LOCNESS test set. On the popular CoNLL 2014 test set, we report state-of-the-art results of 64.16 M² for the submitted system, and 61.30 M² for the constrained system trained on the NUCLE and Lang-8 data.</abstract>
<identifier type="citekey">grundkiewicz-etal-2019-neural</identifier>
<identifier type="doi">10.18653/v1/W19-4427</identifier>
<location>
<url>https://aclanthology.org/W19-4427/</url>
</location>
<part>
<date>2019-08</date>
<extent unit="page">
<start>252</start>
<end>263</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Neural Grammatical Error Correction Systems with Unsupervised Pre-training on Synthetic Data
%A Grundkiewicz, Roman
%A Junczys-Dowmunt, Marcin
%A Heafield, Kenneth
%Y Yannakoudakis, Helen
%Y Kochmar, Ekaterina
%Y Leacock, Claudia
%Y Madnani, Nitin
%Y Pilán, Ildikó
%Y Zesch, Torsten
%S Proceedings of the Fourteenth Workshop on Innovative Use of NLP for Building Educational Applications
%D 2019
%8 August
%I Association for Computational Linguistics
%C Florence, Italy
%F grundkiewicz-etal-2019-neural
%X Considerable effort has been made to address the data sparsity problem in neural grammatical error correction. In this work, we propose a simple and surprisingly effective unsupervised synthetic error generation method based on confusion sets extracted from a spellchecker to increase the amount of training data. Synthetic data is used to pre-train a Transformer sequence-to-sequence model, which not only improves over a strong baseline trained on authentic error-annotated data, but also enables the development of a practical GEC system in a scenario where little genuine error-annotated data is available. The developed systems placed first in the BEA19 shared task, achieving 69.47 and 64.24 F₀.5 in the restricted and low-resource tracks respectively, both on the W&I+LOCNESS test set. On the popular CoNLL 2014 test set, we report state-of-the-art results of 64.16 M² for the submitted system, and 61.30 M² for the constrained system trained on the NUCLE and Lang-8 data.
%R 10.18653/v1/W19-4427
%U https://aclanthology.org/W19-4427/
%U https://doi.org/10.18653/v1/W19-4427
%P 252-263
Markdown (Informal)
[Neural Grammatical Error Correction Systems with Unsupervised Pre-training on Synthetic Data](https://aclanthology.org/W19-4427/) (Grundkiewicz et al., BEA 2019)
ACL