@inproceedings{talafha-etal-2019-mawdoo3,
    title = "Mawdoo3 {AI} at {MADAR} Shared Task: {A}rabic Tweet Dialect Identification",
    author = "Talafha, Bashar  and
      Farhan, Wael  and
      Altakrouri, Ahmed  and
      Al-Natsheh, Hussein",
    editor = "El-Hajj, Wassim  and
      Belguith, Lamia Hadrich  and
      Bougares, Fethi  and
      Magdy, Walid  and
      Zitouni, Imed  and
      Tomeh, Nadi  and
      El-Haj, Mahmoud  and
      Zaghouani, Wajdi",
    booktitle = "Proceedings of the Fourth Arabic Natural Language Processing Workshop",
    month = aug,
    year = "2019",
    address = "Florence, Italy",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/W19-4629/",
    doi = "10.18653/v1/W19-4629",
    pages = "239--243",
    abstract = "Arabic dialect identification is an inherently complex problem, as Arabic dialect taxonomy is convoluted and aims to dissect a continuous space rather than a discrete one. In this work, we present machine and deep learning approaches to predict 21 fine-grained dialects form a set of given tweets per user. We adopted numerous feature extraction methods most of which showed improvement in the final model, such as word embedding, Tf-idf, and other tweet features. Our results show that a simple LinearSVC can outperform any complex deep learning model given a set of curated features. With a relatively complex user voting mechanism, we were able to achieve a Macro-Averaged F1-score of 71.84{\%} on MADAR shared subtask-2. Our best submitted model ranked second out of all participating teams."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="talafha-etal-2019-mawdoo3">
    <titleInfo>
        <title>Mawdoo3 AI at MADAR Shared Task: Arabic Tweet Dialect Identification</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Bashar</namePart>
        <namePart type="family">Talafha</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Wael</namePart>
        <namePart type="family">Farhan</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Ahmed</namePart>
        <namePart type="family">Altakrouri</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Hussein</namePart>
        <namePart type="family">Al-Natsheh</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2019-08</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the Fourth Arabic Natural Language Processing Workshop</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Wassim</namePart>
            <namePart type="family">El-Hajj</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Lamia</namePart>
            <namePart type="given">Hadrich</namePart>
            <namePart type="family">Belguith</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Fethi</namePart>
            <namePart type="family">Bougares</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Walid</namePart>
            <namePart type="family">Magdy</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Imed</namePart>
            <namePart type="family">Zitouni</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Nadi</namePart>
            <namePart type="family">Tomeh</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Mahmoud</namePart>
            <namePart type="family">El-Haj</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Wajdi</namePart>
            <namePart type="family">Zaghouani</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">Florence, Italy</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>Arabic dialect identification is an inherently complex problem, as Arabic dialect taxonomy is convoluted and aims to dissect a continuous space rather than a discrete one. In this work, we present machine and deep learning approaches to predict 21 fine-grained dialects form a set of given tweets per user. We adopted numerous feature extraction methods most of which showed improvement in the final model, such as word embedding, Tf-idf, and other tweet features. Our results show that a simple LinearSVC can outperform any complex deep learning model given a set of curated features. With a relatively complex user voting mechanism, we were able to achieve a Macro-Averaged F1-score of 71.84% on MADAR shared subtask-2. Our best submitted model ranked second out of all participating teams.</abstract>
    <identifier type="citekey">talafha-etal-2019-mawdoo3</identifier>
    <identifier type="doi">10.18653/v1/W19-4629</identifier>
    <location>
        <url>https://aclanthology.org/W19-4629/</url>
    </location>
    <part>
        <date>2019-08</date>
        <extent unit="page">
            <start>239</start>
            <end>243</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Mawdoo3 AI at MADAR Shared Task: Arabic Tweet Dialect Identification
%A Talafha, Bashar
%A Farhan, Wael
%A Altakrouri, Ahmed
%A Al-Natsheh, Hussein
%Y El-Hajj, Wassim
%Y Belguith, Lamia Hadrich
%Y Bougares, Fethi
%Y Magdy, Walid
%Y Zitouni, Imed
%Y Tomeh, Nadi
%Y El-Haj, Mahmoud
%Y Zaghouani, Wajdi
%S Proceedings of the Fourth Arabic Natural Language Processing Workshop
%D 2019
%8 August
%I Association for Computational Linguistics
%C Florence, Italy
%F talafha-etal-2019-mawdoo3
%X Arabic dialect identification is an inherently complex problem, as Arabic dialect taxonomy is convoluted and aims to dissect a continuous space rather than a discrete one. In this work, we present machine and deep learning approaches to predict 21 fine-grained dialects form a set of given tweets per user. We adopted numerous feature extraction methods most of which showed improvement in the final model, such as word embedding, Tf-idf, and other tweet features. Our results show that a simple LinearSVC can outperform any complex deep learning model given a set of curated features. With a relatively complex user voting mechanism, we were able to achieve a Macro-Averaged F1-score of 71.84% on MADAR shared subtask-2. Our best submitted model ranked second out of all participating teams.
%R 10.18653/v1/W19-4629
%U https://aclanthology.org/W19-4629/
%U https://doi.org/10.18653/v1/W19-4629
%P 239-243
Markdown (Informal)
[Mawdoo3 AI at MADAR Shared Task: Arabic Tweet Dialect Identification](https://aclanthology.org/W19-4629/) (Talafha et al., WANLP 2019)
ACL