@inproceedings{rosales-nunez-etal-2019-comparison,
title = "Comparison between {NMT} and {PBSMT} Performance for Translating Noisy User-Generated Content",
author = "Rosales N{\'u}{\~n}ez, Jos{\'e} Carlos and
Seddah, Djam{\'e} and
Wisniewski, Guillaume",
editor = "Hartmann, Mareike and
Plank, Barbara",
booktitle = "Proceedings of the 22nd Nordic Conference on Computational Linguistics",
month = sep # "{--}" # oct,
year = "2019",
address = "Turku, Finland",
publisher = {Link{\"o}ping University Electronic Press},
url = "https://aclanthology.org/W19-6101",
pages = "2--14",
abstract = "This work compares the performances achieved by Phrase-Based Statistical Machine Translation systems (PB-SMT) and attention-based Neuronal Machine Translation systems (NMT) when translating User Generated Content (UGC), as encountered in social medias, from French to English. We show that, contrary to what could be expected, PBSMT outperforms NMT when translating non-canonical inputs. Our error analysis uncovers the specificities of UGC that are problematic for sequential NMT architectures and suggests new avenue for improving NMT models.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="rosales-nunez-etal-2019-comparison">
<titleInfo>
<title>Comparison between NMT and PBSMT Performance for Translating Noisy User-Generated Content</title>
</titleInfo>
<name type="personal">
<namePart type="given">José</namePart>
<namePart type="given">Carlos</namePart>
<namePart type="family">Rosales Núñez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Djamé</namePart>
<namePart type="family">Seddah</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Guillaume</namePart>
<namePart type="family">Wisniewski</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-sep–oct</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 22nd Nordic Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mareike</namePart>
<namePart type="family">Hartmann</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Barbara</namePart>
<namePart type="family">Plank</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Linköping University Electronic Press</publisher>
<place>
<placeTerm type="text">Turku, Finland</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This work compares the performances achieved by Phrase-Based Statistical Machine Translation systems (PB-SMT) and attention-based Neuronal Machine Translation systems (NMT) when translating User Generated Content (UGC), as encountered in social medias, from French to English. We show that, contrary to what could be expected, PBSMT outperforms NMT when translating non-canonical inputs. Our error analysis uncovers the specificities of UGC that are problematic for sequential NMT architectures and suggests new avenue for improving NMT models.</abstract>
<identifier type="citekey">rosales-nunez-etal-2019-comparison</identifier>
<location>
<url>https://aclanthology.org/W19-6101</url>
</location>
<part>
<date>2019-sep–oct</date>
<extent unit="page">
<start>2</start>
<end>14</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Comparison between NMT and PBSMT Performance for Translating Noisy User-Generated Content
%A Rosales Núñez, José Carlos
%A Seddah, Djamé
%A Wisniewski, Guillaume
%Y Hartmann, Mareike
%Y Plank, Barbara
%S Proceedings of the 22nd Nordic Conference on Computational Linguistics
%D 2019
%8 sep–oct
%I Linköping University Electronic Press
%C Turku, Finland
%F rosales-nunez-etal-2019-comparison
%X This work compares the performances achieved by Phrase-Based Statistical Machine Translation systems (PB-SMT) and attention-based Neuronal Machine Translation systems (NMT) when translating User Generated Content (UGC), as encountered in social medias, from French to English. We show that, contrary to what could be expected, PBSMT outperforms NMT when translating non-canonical inputs. Our error analysis uncovers the specificities of UGC that are problematic for sequential NMT architectures and suggests new avenue for improving NMT models.
%U https://aclanthology.org/W19-6101
%P 2-14
Markdown (Informal)
[Comparison between NMT and PBSMT Performance for Translating Noisy User-Generated Content](https://aclanthology.org/W19-6101) (Rosales Núñez et al., NoDaLiDa 2019)
ACL